Project description:Understanding latitudinal variation in avian life-history traits has been a focus of many demographic studies around the world. However, we still know little about annual or intra-annual demographic variation within tropical regions or about how factors such as breeding season and precipitation influence demographic rates. In this study, we estimated intra-annual apparent survival of the White-lined Tanager (Tachyphonus rufus) using capture-mark-recapture data from northeastern Brazil. We tested whether survival varied seasonally (breeding vs. non-breeding), with rainfall, by age and residence status in our study area. Intra-annual apparent survival was correlated with the reproductive cycle, being lower during the breeding (0.65 ± 0.16 SE) vs. the non-breeding season (0.97 ± 0.05 SE). The annual apparent survival (~0.6) was relatively low for a tropical species. In both years, we observed highest abundance in spring (November, 3.1-3.7 birds/ha) and lowest abundance in autumn-winter periods (May-August, 1.1-1.4 bird/ha). The low survival during the breeding season probably reflects the trade-off between survival and reproduction and the cost of reproduction. Our findings represent an advance in the understanding of the demography of tropical birds because we did not find a predicted high annual apparent survival, and we elucidated some aspects of intra-annual variation in survival. Further exploration of latitudinal variation in demographic traits, especially in diverse, but poorly known habitats is needed to fully vet and develop life history theories.
Project description:Saccharomonospora azurea Runmao et al. 1987 is a member of the genus Saccharomonospora, which is in the family Pseudonocardiaceae and thus far poorly characterized genomically. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as leaf litter, manure, compost, the surface of peat, and moist and over-heated grain, and may play a role in the primary degradation of plant material by attacking hemicellulose. Next to S. viridis, S. azurea is only the second member in the genus Saccharomonospora for which a completely sequenced type strain genome will be published. Here we describe the features of this organism, together with the complete genome sequence with project status 'Improved high quality draft', and the annotation. The 4,763,832 bp long chromosome with its 4,472 protein-coding and 58 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).
Project description:In the present study, the detection of a pantropic canine coronavirus (CCoV) strain in a dog with lethal diarrhoea is reported. RT-PCR and real-time RT-PCR assays were used for the detection, characterization and quantitation of CCoV. Sequence and phylogenetic analysis of the CCoV NA/09 revealed a high degree of sequence identity with the pantropic strain CB/05, indicating the presence of CB/05-like pantropic strains in Greece. The absence of the 38-nucleotide deletion in ORF3b, which is characteristic of CB/05, indicates the need to identify new genetic markers for pantropic variants of CCoV, probably in the spike-protein gene region.
Project description:Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyan blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).