Project description:Using a combination of ChIP-seq and RNA-seq we show that ToxT regulates expression of the small RNA TarB. TarB modulates the expression level of the transcriptioanl repressor VC0177. VC0177 controls expression of several genes including VC0179. The function of the Vibrio 7th pandemic island-1 (VSP-1) in cholera pathogenesis has remained obscure. Utilizing ChIP-seq and RNA-seq to map the regulon of the master virulence regulator ToxT, we identify a TCP island encoded small RNA that reduces the expression of a previously unrecognized VSP-1 encoded transcription factor termed VspR. VspR modulates the expression of several VSP-1 genes including one that encodes a novel class of di-nucleotide cyclase (DncV), which preferentially synthesizes a previously undescribed hybrid cyclic AMP-GMP molecule. We show that DncV is required for efficient intestinal colonization and down-regulates V. cholerae chemotaxis, a phenotype previously associated with hyperinfectivity. This pathway couples the actions of previously disparate genomic islands, defines VSP-1 as a pathogenicity island in V. cholerae and implicates its occurrence in 7th pandemic strains as a benefit for host adaptation through the production of a regulatory cyclic di-nucleotide.
Project description:Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects non-toxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.
Project description:Purpose: to characterize the regulatory targets of an AraC-like transcriptional regulator (VC0513) encoded on the Vibrio Seventh Pandemic Island -II (VSP-II) in V. cholerae O1 El Tor N16961 Methods: RNA was isolated from a wild-type N16961 carrying an IPTG-inducible copy of vc0513, vc0515, or an empty vector control Results: vc0513 induction significantly increased expression of other VSP-II encoded genes relative to the empty vector control Conclusions: our study represents the first analysis of a transcriptional regulator encoded on the VSP-II island