Project description:Differential RNA-seq (dRNA-seq) was performed on Pseudomonas aeruginosa alone or shortly after iinfection with the jumbo phage phiKZ
2020-11-13 | GSE153067 | GEO
Project description:Extensively drug-resistant Pseudomonas aeruginosa ST357 in the Netherlands
Project description:Clinical case studies have reported that the combined use of specific lytic phage(s) and antibiotics reduces the severity of difficult-to-treat Pseudomonas aeruginosa infections in many patients. In vitro methods that attempt to reproduce specific pathophysiological conditions can provide a reliable assessment of the antibacterial effects of phages. Here, we measured bacterial killing kinetics and individual phage replication in different growth phases, including biofilms, elucidating factors influencing the efficacy of two phages against the laboratory strain P. aeruginosa PAO1. While two-phage combination treatment effectively eliminated P. aeruginosa in routine broth and in infected human lung cell cultures, the emergence of phage-resistant variants occurred under both conditions. Phage combination displayed initial inhibition of biofilm dispersal, but sustained control was achieved only with a combination of phages and meropenem. In contrast, surface-attached biofilm exhibited tolerance to phage and/or meropenem, suggesting a spatiotemporal variation in antibacterial effect. Moreover, the phage with the shorter lysis time killed P. aeruginosa more rapidly, selecting a specific nucleotide polymorphism that likely conferred a competitive disadvantage and cross resistance to the second phage of the combination. These findings highlight biofilm developmental phase, inter-phage competition and phage resistance as factors limiting the in vitro efficacy of a phage combination. However, their precise impact on the outcome of phage therapy remains uncertain, necessitating validation through phage efficacy trials in order to establish clearer correlations between laboratory assessments and clinical results.
Project description:Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells derived from a person with cystic fibrosis, we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections
Project description:Traditional vaccines are difficult to deploy against the diverse antibiotic-resistant, nosocomial pathogens that cause Hospital Acquired Infections (HAIs). We developed a unique, protein-free vaccine to present antibiotic-resistant HAIs. This vaccine protected mice from invasive infections caused by methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, multidrug resistant Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Rhizopus delemar, and Candida albicans. Protection persisted even in neutropenic mice infected with A. baumannii or R. delemar. Protection was already apparent after 24 hours and lasted for up to 21 days after a single dose, with a second dose restoring efficacy. Protection persisted without lymphocytes but was abrogated with macrophages depletion. This vaccine induced trained immunity by altering the macrophage epigenetic landscape and the inflammatory response to infection.
Project description:Pseudomonas aeruginosa is a gram negative, opportunistic pathogen, which is the major cause of corneal infections in India and worldwide. Being categorised in the critical group of antibiotic resistant species, it has prompted significance rise in research to develop alternative therapeutics. One such alternative to combat bacterial infections is antimicrobial peptides (AMPs). This study aims to investigate the role of S100A12, a host defence peptide against PAO1. It was also seen to inhibit the bacterial growth of PAO1 in vitro as seen from the colony forming units. Our study sheds light on how S100A12 impacts Pseudomonas and that it might have the potential to be used as therapeutic intervention in addition to antibiotics in future.