Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ3] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.
Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ1] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.
Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE25128: Gene expression data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections GSE25129: Comparative genomic hybridisation data from Pseudomonas aeruginosa strains isolated from cystic fibrosis lung infections
Project description:To determine if differences in the severity of pulmonary infection in cystic fibrosis been seen in late isolates od Pseudomonas aeruginosa and Burkholderia cepacia are associated with differences in the initial repsonse of alveolar macrophages (AM) to these pathogens, we assessed gene expression changes in human AM in response to infection with a laboratoty strain, early and late clinical isolates of P. aeruginosa, and B. cepacia. Keywords: Comparison of gene expression in alveolar macrophages of normal non-smokers and normal smokers.
Project description:Pseudomonas aeruginosa airway infection is the primary cause of death in Cystic Fibrosis (CF). During early infection P. aeruginosa produces multiple virulence factors, which cause acute pulmonary disease and are largely regulated by quorum sensing (QS) intercellular signalling networks. Longitudinal clinical studies have observed the loss, through adaptive mutation, of QS and QS-related virulence in late chronic infection. Although the mechanisms are not understood, infection with QS mutants has been linked to a worse outcome for CF patients. By comparing QS-active and QS-inactive P. aeruginosa CF isolates, we have identified novel virulence factors and pathways associated with QS disruption. In particular, we noted factors implicating increased intra-phagocyte survival. Our data present novel targets as candidates for future CF therapies. Some of these targets are already the subject of drug development programmes for the treatment of other bacterial pathogens and may provide cross-over benefit to the CF population. This SuperSeries is composed of the SubSeries listed below.
Project description:To determine if differences in the severity of pulmonary infection in cystic fibrosis been seen in late isolates od Pseudomonas aeruginosa and Burkholderia cepacia are associated with differences in the initial repsonse of alveolar macrophages (AM) to these pathogens, we assessed gene expression changes in human AM in response to infection with a laboratoty strain, early and late clinical isolates of P. aeruginosa, and B. cepacia. Experiment Overall Design: Alveolar macrophages were obtained from bronchoalveolar lavage. Experiment Overall Design: Two clinical strains isolated from the sputum of an individual with CF, AD2A and AD15B (provided by J. Burns, University of Washington, Seattle). AD2A is an early clinical isolate, and AD15B is a late clinical isolate; both were derived from the same individual.
Project description:Untargeted metabolomics analysis of in vitro headspace volatiles from 81 Pseudomonas aeruginosa bacterial isolates from individuals with cystic fibrosis. Headspace volatiles were collected using solid-phase microextraction (SPME) (in triplicate) and comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS). 15 replicates of un-inoculated media were prepared and analyzed in parallel, for a total of 258 samples.