Project description:The objective of this study was to decipher the metabolism expressed by Lactobacillus delbrueckii subsp. delbrueckii CIRM-BIA865 during soy juice fermentation using transcriptomics. The whole genome was sequenced, assembled and annotated. CIRM-BIA865 was then used to ferment soy juice to produce a soy-based yogurt. Samples were analysed in kinetics during fermentation, at pH values of 6.5, 6, 5 and 4.6. RNA from CIRM-BIA865 were extracted and sequenced using paired-end Illumina. Reads were mapped using Bowtie2 on previously obtained genome of CIRM-BIA865. No mismatch were allowed. Reads mapped on CDS were counted using htseqcount.List of differentially expressed (DE) genes between two successive sampling times (determined by pH) were generated using DEseq2 with a modified t-test and a p-value adjusted by Bonferoni inferior to 0.05. Fold changes expressed how many times genes were induced along the fermentations.
Project description:Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.ImportanceThis study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.
Project description:Transcriptional profiling of Lactobacillus delbrueckii subsp. bulgaricus 2038 during the growth in casein proteins conditioned medium compared with the start control (cells treated in whey conditioned medium). Identifying the genes that are differentially expressed during the growth of Lb. bulgaricus 2038 in casein proteins condition provides a starting point for the investigation of metabolic mechanisms.