Project description:Sea-ice algae provide an important source of primary production in polar regions, yet we have limited understanding of their responses to the seasonal cycling of temperature and salinity. Using a targeted liquid chromatography-mass spectrometry-based metabolomics approach, we found that axenic cultures of the Antarctic sea-ice diatom, Nitzschia lecointei, displayed large differences in their metabolomes when grown in a matrix of conditions that included temperatures of –1 and 4°C, and salinities of 32 and 41, despite relatively small changes in growth rate. Temperature exerted a greater effect than salinity on cellular metabolite pool sizes, though the N- or S-containing compatible solutes, 2,3-dihydroxypropane-1-sulfonate (DHPS), glycine betaine (GBT), dimethylsulfoniopropionate (DMSP), and proline responded strongly to both temperature and salinity, suggesting complexity in their control. We saw the largest (> 4 fold) response to salinity for proline. DHPS, a rarely studied but potential compatible solute, reached the highest intracellular compatible solute concentrations of ~ 85 mM. When comparing the culture findings to natural Arctic sea-ice diatom communities, we found extensive overlap in metabolite profiles, highlighting the relevance of culture-based studies to probe environmental questions. Large changes in sea-ice diatom metabolomes and compatible solutes over a seasonal cycle could be significant components of biogeochemical cycling within sea ice.
Project description:We investigated the functional gene expression changes associated with temperature stress in two psychrophilic sea ice bacteria, Polaribacter sp. ALD9 and Shewanella sp. ALD11.
Project description:Gilthead sea bream fed plant-protein based diets with either fish oil or vegetable oil as the most iportant source of dietary lipids were experimentally exposed to the intestinal parasite Enteromyxum leei by water effluent. A specific gilthead sea bream oligo-microarray was used to determine the intestine transcriptomic response.
Project description:Gilthead sea bream fed plant-protein based diets with either fish oil or vegetable oil as the most iportant source of dietary lipids were experimentally exposed to the intestinal parasite Enteromyxum leei by water effluent. A specific gilthead sea bream oligo-microarray was used to determine the intestine transcriptomic response. 41 samples from six experimental groups (2 diets x 3 infective status) in a single-color hybridization