Project description:Heat stress is a major limiting factor for grain yield and grain quality in wheat production. In crops, abiotic stresses have transgenerational effects and the mechanistic basis of stress memory is associated with epigenetic regulation. The current study presents the first systematic analysis of the transgenerational effects of post-anthesis heat stress in tetraploid wheat. Genotype-dependent response patterns to parental and progeny heat stress were found for the leaf physiological traits, harvest components, and grain quality traits measured. Parental heat stress had positive influence on the offspring under re-occurring stress for traits like chlorophyll content, grain weight, grain number and grain total starch content. Integrated sequencing analysis of the small RNAome, mRNA transcriptome, and mRNA degradome provided the first description of the molecular networks mediating heat stress adaption under transgenerational influence. The expression profile of 1771 microRNAs (733 being novel) and 66,559 genes was provided, with differentially expressed microRNAs and genes identified subject to the progeny treatment, parental treatment and tissue type factors. Gene Ontology and KEGG pathway annotation of stress responsive microRNAs-mRNA modules provided further information on their functional roles in biological processes like hormone homeostasis, signal transduction, and protein stabilization. Our results provide new sights on the molecular basis of transgenerational heat stress adaptation, which can be used for improving thermos-tolerance in breeding.
Project description:High temperature during the grain-filling stage causes deleterious effects on storage material accumulation and grain quality. But it is still unclear how high temperature affects storage materials accumulation. In this study, we systemically analyzed the expression pattern of rice genes under high temperture during the grain-filling stage.
Project description:We report the sequences bound to CENP-A in the dog genome (Canis familiaris) for high-throughput characterization of centromeric sequences. We compare these ChIPSeq reads (72 bp, single read) against a reference centromeric satellite DNA domain database for the dog genome, resulting in the annotation of sequence variation and estimated abundance of seven satellite families together with adjacent, non-satellite sequences. To study global patterns of sequence diversity and characterizing the subset of sequences correlated with centromere function, these sequences were evaluated relative to a comprehensive centromere sequence domain k-mer library. From this analysis, we identify functional sequence features from two satellite families (CarSat1 and CarSat2) that are defined by distinct arrays subtypes. Sequences bound to CENP-A in MDCK (dog) cell line
Project description:Plants possess various defense strategies to counter attacks from microorganisms or herbivores. For example, plants reduce the cell-wall-macerating activity of pathogen- or insect-derived polygalacturonases (PGs) by expressing PG-inhibiting proteins (PGIPs). PGs and PGIPs belong to multi-gene families believed to have been shaped by an evolutionary arms race. The mustard leaf beetle Phaedon cochleariae expresses both active PGs and catalytically inactive PG pseudoenzymes. Previous studies demonstrated that (i) PGIPs target beetle PGs and (ii) the role of PG pseudoenzymes remains elusive, despite having been linked to the pectin degradation pathway. For further insight into the interaction between plant PGIPs and beetle PG family members, we combined affinity purification with proteomics and gene expression analyses, and identified novel inhibitors of beetle PGs from Chinese cabbage (Brassica rapa ssp. pekinensis). A beetle PG pseudoenzyme was not targeted by PGIPs, but instead interacted with PGIP-like proteins. Phylogenetic analysis revealed that PGIP-like proteins clustered apart from classical PGIPs but together with proteins, which have been involved in developmental processes. Our results indicate that PGIP-like proteins represent not only interesting novel PG inhibitor candidates in addition to classical PGIPs, but also fascinating new players in the arms race between herbivorous beetles and plant defenses.
Project description:We report the sequences bound to CENP-A in the dog genome (Canis familiaris) for high-throughput characterization of centromeric sequences. We compare these ChIPSeq reads (72 bp, single read) against a reference centromeric satellite DNA domain database for the dog genome, resulting in the annotation of sequence variation and estimated abundance of seven satellite families together with adjacent, non-satellite sequences. To study global patterns of sequence diversity and characterizing the subset of sequences correlated with centromere function, these sequences were evaluated relative to a comprehensive centromere sequence domain k-mer library. From this analysis, we identify functional sequence features from two satellite families (CarSat1 and CarSat2) that are defined by distinct arrays subtypes.
Project description:Eukaryotic transcriptomes are complex involving thousands of overlapping transcripts. The interleaved nature of the transcriptome complicates its annotation, limits our ability to identify regulatory regions and, in some cases, can lead to misinterpretation of gene expression. Long-read technologies promise to solve this problem, however short-read approaches have still better throughput and quality. To bridge this gap, we have developed an optimized method, TIF-Seq2, able to sequence simultaneously the 5’ and 3’ end of individual mRNA molecules at single-nucleotide resolution. We investigate the transcriptome of a well-characterized human cell line (K562) and identify thousands of new transcript isoforms. By focusing on mRNAs challenging to investigate with RNA-Seq, we accurately define boundaries of low expressed intergenic and read-through transcripts. We validate those novel features in cell lines and in chronic myeloid leukaemia patients. Our results demonstrate that TIF-Seq2 improves the annotation of complex genomes facilitating the assignment of promoters to genes and the identification of transcriptionally fused proteins.
Project description:Yield and quality are the two most important traits in crop breeding. Exploring the regulatory mechanisms that affect both yield and quality traits is of great significance for understanding the molecular genetic networks controlling these key crop attributes. Expansins are cell wall loosening proteins that play important roles in regulating rice grain size. We investigated the effect of OsEXPA7, encoding an expansin, on rice grain size and quality. OsEXPA7 overexpression resulted in increased plant height, panicle length, grain length, and thousand-grain weight in rice. OsEXPA7 overexpression also affected gel consistency and amylose content in rice grains, thus affecting rice quality. Subcellular localization and tissue expression analyses showed that OsEXPA7 is localized on the cell wall and is highly expressed in the panicle. Hormone treatment experiments revealed that OsEXPA7 expression mainly responds to methyl jasmonate, brassinolide, and gibberellin. Transcriptome analysis and RT-qPCR experiments showed that overexpression of OsEXPA7 affects the expression of OsJAZs in the jasmonic acid pathway and BZR1 and GE in the brassinosteroid pathway. In addition, OsEXPA7 regulates the expression of key quantitative trait loci related to yield traits, as well as regulates the expression levels of BIP1 and bZIP50 involved in the seed storage protein biosynthesis pathway. These results reveal that OsEXPA7 positively regulates rice yield traits and negatively regulates grain quality traits by involving plant hormone pathways and other trait-related pathway genes. These findings increase our understanding of the potential mechanism of expansins in regulating rice yield and quality traits and will be useful for breeding high-yielding and high-quality rice cultivars.