Project description:Laboratory strains of Saccharmoyces cerevisiae have been widely used as a model for studying eukaryotic cells and mapping the molecular mechanisms of many different human diseases. Industrial wine yeasts, on the other hand, have been selected over hundreds of years on the basis of their adaptation to stringent environmental conditions and the organoleptic properties they confer to wine. Here, we applied a two-factor design to study the response of a standard laboratory strain, CEN.PK.113-7D, and an industrial wine yeast-strain, EC1118, to growth temperature at 15°C and 30°C under 12 nitrogen-limited, anaerobic steady-state chemostat cultures. Physiological characterization revealed that growth temperature strongly impacted biomass yields in both strains. Moreover, we observed that the wine yeast is better adapted to mobilizing resources for biomass and that the laboratory yeast exhibited higher fermentation rates. To elucidate mechanistic differences controlling the growth temperature response and underlying adaptive mechanisms between strains, DNA microarrays and targeted metabolome analysis were used. We identified 1007 temperature dependent genes and 473 strain dependent genes. The transcriptional response was used to identify highly correlated subnetworks of significantly changing genes in metabolism. We show that temperature differences most strongly affect nitrogen metabolism and the heat shock response. Lack of STRE mediated gene induction, coupled with reduced trehalose levels, indicates a decreased general stress response at 15°C relative to 30°C. Between strains, differential responses are centred around sugar uptake, nitrogen metabolism and expression of genes related to organoleptic properties. Our study provides global insight into how growth temperature exerts a differential physiological and transcriptional response in laboratory and wine strains of S. cerevisiae.
Project description:In this study we focus on two Saccharomyces cerevisiae strains with varying production of heterologous α-amylase and we compare the metabolic fluxes and transcriptional regulation at aerobic and anaerobic conditions, in particular with the objective to identify the final electron acceptor for protein folding. We found that anaerobic conditions showed high amount of amylase productions when comparing to aerobic conditions and the genome-scale transcriptional analysis suggested that genes related to the endoplasmic reticulum (ER), lipid synthesis and stress responses were generally up-regulated at anaerobic conditions. Moreover, we proposed a model for the electron transfer from ER to the final electron acceptor, fumarate under anaerobic conditions.
Project description:Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and transcriptome has not been studied in detail. In this study, 24-h sinoidal temperature cycles, oscillating between 12 and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose, and extracellular metabolites, as well as CO2-production rates showed regular, reproducible circadian rhytms. DTC also led to waves of transcriptional activation and repression, which involved one sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to primarily respond to changes in glucose concentration. Elimination of known glucose-responsive genes revealed overrepresentation of previously identified temperature-responsive genes as well as genes involved in cell cycle and de novo purine biosynthesis. Analyses of budding index and flow cytomery demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in the chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to almost completely acclimatize their transcriptome and physiology at the DTC temperature maximum, and to approach acclimation at the DTC temperature minimum.
Project description:In Saccharomyces cerevisiae, glycogen and trehalose are important reserve carbohydrates that accumulate under nutrient limitation in batch cultures. An inherent draw-back of batch studies is that specific growth rate and substrate and product concentrations are variable over time and between cultures. The aim of this present study was to identify the nutritional requirements associated with high accumulation of reserve carbohydrates at a fixed specific growth rate (0.10 h-1) in anaerobic chemostat cultures that were limited by one of five different nutrients (carbon, nitrogen, sulfur, phosphorus or zinc). Reserve carbohydrates accumulation is not a general response to nutrient limitation. Over the conditions tested, accumulation occurs essentially under nitrogen (and to a lesser extent carbon) limited conditions. This was confirmed by the transcriptional profile of the genes involved in trehalose biosynthesis. We show that the transcriptional induction of both glycogen and trehalose biosynthesis genes was to a large extent driven by the regulator Msn2/4. However, the main regulatory control of glycogen biosynthesis was post-translational. Under nitrogen limitation, the ratio of glycogen synthase over glycogen phosphorylase increased up to eight-fold, thus enabling an increased flux towards glycogen biosynthesis. Experiment Overall Design: We studied this in anaerobic chemostat cultures at a dilution rate of 0.10 h-1 where growth was limited by five different nutrients (carbon, nitrogen, sulfur, phosphorus or zinc limitations). In addition, we studied the expression of these pathways at transcriptional and post-transcriptional levels and assessed the role of Msn2/4 in mediating transcriptional induction of glycogen and trehalose genes in the absence of stress.
Project description:Second fermentation in a bottle supposes such specific conditions that undergo yeasts to a set of stress situations like high ethanol, low nitrogen, low pH or sub-optimal temperature. Also, yeast have to grow until 1 or 2 generations and ferment all sugar available while they resist increasing CO2 pressure produced along with fermentation. Because of this, yeast for second fermentation must be selected depending on different technological criteria such as resistance to ethanol, pressure, high flocculation capacity, and good autolytic and foaming properties. All of these stress factors appear sequentially or simultaneously, and their superposition could amplify their inhibitory effects over yeast growth. Considering all of the above, it has supposed interesting to characterize the adaptive response of commercial yeast strain EC1118 during second-fermentation experiments under oenological/industrial conditions by transcriptomic profiling. We have pointed ethanol as the most relevant environmental condition in the induction of genes involved in respiratory metabolism, oxidative stress, autophagy, vacuolar and peroxisomal function, after comparison between time-course transcriptomic analysis in alcoholic fermentation and transcriptomic profiling in second fermentation. Other examples of parallelism include overexpression of cellular homeostasis and sugar metabolism genes. Finally, this study brings out the role of low-temperature on yeast physiology during second-fermentation.
Project description:In this study we focus on two Saccharomyces cerevisiae (CEN. PK series) strains producing either insulin precursor or amylase and we compare the transcriptional regulation at different dilution rates, in particular with the objective to identify the relationship between cell metabolism and recombinant protein production. We found that anaerobic conditions showed high amount of amylase productions when comparing to aerobic conditions and the genome-scale transcriptional analysis suggested that genes related to the endoplasmic reticulum (ER), lipid synthesis and stress responses were generally up-regulated at anaerobic conditions. Moreover, we proposed a model for the electron transfer from ER to the final electron acceptor, fumarate under anaerobic conditions.
Project description:In this study we focus on two Saccharomyces cerevisiae strains with varying production of heterologous M-NM-1-amylase and we compare the metabolic fluxes and transcriptional regulation at aerobic and anaerobic conditions, in particular with the objective to identify the final electron acceptor for protein folding. We found that anaerobic conditions showed high amount of amylase productions when comparing to aerobic conditions and the genome-scale transcriptional analysis suggested that genes related to the endoplasmic reticulum (ER), lipid synthesis and stress responses were generally up-regulated at anaerobic conditions. Moreover, we proposed a model for the electron transfer from ER to the final electron acceptor, fumarate under anaerobic conditions. Three Saccharomyces cerevisiae strains with varied amylase productions were selected at early glucose phase in batch fermentations for RNA extraction and hybridization on Affymetrix microarrays. Biological triplicates were applied, and strains with empty plasmid (no amylase productions) were used as control strain.