Project description:In this study we focus on two Saccharomyces cerevisiae strains with varying production of heterologous α-amylase and we compare the metabolic fluxes and transcriptional regulation at aerobic and anaerobic conditions, in particular with the objective to identify the final electron acceptor for protein folding. We found that anaerobic conditions showed high amount of amylase productions when comparing to aerobic conditions and the genome-scale transcriptional analysis suggested that genes related to the endoplasmic reticulum (ER), lipid synthesis and stress responses were generally up-regulated at anaerobic conditions. Moreover, we proposed a model for the electron transfer from ER to the final electron acceptor, fumarate under anaerobic conditions.
Project description:In this study we focus on two Saccharomyces cerevisiae (CEN. PK series) strains producing either insulin precursor or amylase and we compare the transcriptional regulation at different dilution rates, in particular with the objective to identify the relationship between cell metabolism and recombinant protein production. We found that anaerobic conditions showed high amount of amylase productions when comparing to aerobic conditions and the genome-scale transcriptional analysis suggested that genes related to the endoplasmic reticulum (ER), lipid synthesis and stress responses were generally up-regulated at anaerobic conditions. Moreover, we proposed a model for the electron transfer from ER to the final electron acceptor, fumarate under anaerobic conditions.
Project description:In this study we focus on two Saccharomyces cerevisiae strains with varying production of heterologous M-NM-1-amylase and we compare the metabolic fluxes and transcriptional regulation at aerobic and anaerobic conditions, in particular with the objective to identify the final electron acceptor for protein folding. We found that anaerobic conditions showed high amount of amylase productions when comparing to aerobic conditions and the genome-scale transcriptional analysis suggested that genes related to the endoplasmic reticulum (ER), lipid synthesis and stress responses were generally up-regulated at anaerobic conditions. Moreover, we proposed a model for the electron transfer from ER to the final electron acceptor, fumarate under anaerobic conditions. Three Saccharomyces cerevisiae strains with varied amylase productions were selected at early glucose phase in batch fermentations for RNA extraction and hybridization on Affymetrix microarrays. Biological triplicates were applied, and strains with empty plasmid (no amylase productions) were used as control strain.
Project description:In Saccharomyces cerevisiae, glycogen and trehalose are important reserve carbohydrates that accumulate under nutrient limitation in batch cultures. An inherent draw-back of batch studies is that specific growth rate and substrate and product concentrations are variable over time and between cultures. The aim of this present study was to identify the nutritional requirements associated with high accumulation of reserve carbohydrates at a fixed specific growth rate (0.10 h-1) in anaerobic chemostat cultures that were limited by one of five different nutrients (carbon, nitrogen, sulfur, phosphorus or zinc). Reserve carbohydrates accumulation is not a general response to nutrient limitation. Over the conditions tested, accumulation occurs essentially under nitrogen (and to a lesser extent carbon) limited conditions. This was confirmed by the transcriptional profile of the genes involved in trehalose biosynthesis. We show that the transcriptional induction of both glycogen and trehalose biosynthesis genes was to a large extent driven by the regulator Msn2/4. However, the main regulatory control of glycogen biosynthesis was post-translational. Under nitrogen limitation, the ratio of glycogen synthase over glycogen phosphorylase increased up to eight-fold, thus enabling an increased flux towards glycogen biosynthesis. Experiment Overall Design: We studied this in anaerobic chemostat cultures at a dilution rate of 0.10 h-1 where growth was limited by five different nutrients (carbon, nitrogen, sulfur, phosphorus or zinc limitations). In addition, we studied the expression of these pathways at transcriptional and post-transcriptional levels and assessed the role of Msn2/4 in mediating transcriptional induction of glycogen and trehalose genes in the absence of stress.
Project description:Physiological effects of carbon dioxide and impact on genome-wide transcript profiles were analysed in chemostat cultures of Saccharomyces cerevisiae. In anaerobic, glucose-limited chemostat cultures grown at atmospheric pressure, cultivation under CO2-saturated conditions had only a marginal (<10%) impact on the biomass yield. Conversely, a 25% decrease of the biomass yield was found in aerobic, glucose-limited chemostat cultures aerated with a mixture of 79% CO2 and 21% O2. This observation indicated that respiratory metabolism is more sensitive to CO2 than fermentative metabolism. Consistent with the more pronounced physiological effects of CO2 in respiratory cultures, the number of CO2-responsive transcripts was higher in aerobic cultures than in anaerobic cultures. Many genes involved in mitochondrial functions showed a transcriptional response to elevated CO2 concentrations. This is consistent with an uncoupling effect of CO2 and/or intracellular bicarbonate on the mitochondrial inner membrane. Other transcripts that showed a significant transcriptional response to elevated CO2 included NCE103 (probably encoding carbonic anhydrase), PCK1 (encoding PEP carboxykinase) and members of the IMD gene family (encoding isozymes of inosine monophosphate dehydrogenase Keywords: Dose reponse