Project description:Epithelial Ovarian Cancer (EOC) is the leading cause of gynecologic cancer death. Despite many patients achieving remission with first-line therapy, up to 80% of patients will recur and require additional treatment. Retrospective clinical analysis of OC patients indicates antibiotic use during chemotherapy treatment is associated with poor overall survival. We assessed whether antibiotic (ABX) therapy would impact growth of EOC and sensitivity to cisplatin in murine models. Immune competent or compromised mice were given control or ABX containing water (metronidazole, ampicillin, vancomycin, and neomycin) before being intraperitoneally injected with murine EOC cells. Stool was collected to confirm microbiome disruption and tumors were monitored, and cisplatin therapy was administered weekly until endpoint. EOC tumor-bearing mice demonstrate accelerated tumor growth and resistance to cisplatin therapy in ABX treated compared with nonABX treatment. Stool analysis indicated most gut microbial species were disrupted by ABX treatment except for ABX resistant bacteria. To test for role of the gut microbiome, cecal microbiome transplants (CMTs) of microbiota derived from ABX or nonABX treated mice were used to recolonize the microbiome of ABX treated mice. nonABX cecal microbiome was sufficient to ameliorate the chemoresistance and survival of ABX treated mice indicative of a gut derived tumor suppressor. Mechanistically, tumors from ABX treated compared to nonABX treated mice contained a high frequency of cancer stem cells that were augmented by cisplatin. These studies indicate an intact microbiome provides a gut derived tumor suppressor and maintains chemosensitivity that is disrupted by ABX treatment.
Project description:The gut of chicken is mostly colonised with Campylobacter jejuni and with 100 fold less C. coli. The competitive ability of C. coli OR12 over C. jejuni OR1 has been examined in experimental broiler chickens following the observation that C. coli replaced an established C. jejuni intestinal colonisation within commercial chicken flocks reared outdoors (El-Shibiny, A., Connerton, P.L., Connerton, I.F., 2005. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Applied Environmental Microbiology. 71, 1259-1266).
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This series includes gene expression in the ileum of control, antibiotics (ABx)-treated, germfree, germfree-ABx-treated and mice colonized with normal or Abx-resistant microbiota. common reference design with a pool of small intestine RNA labeled with Cy3
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This series includes gene expression in the ileum of control, antibiotics (ABx)-treated, germfree, germfree-ABx-treated and mice colonized with normal or Abx-resistant microbiota.
Project description:Microbial sequencing revealed progressive reduction of gut microbiota that showed some differences in the two ABX groups compared to untreated controls. Interestingly, duration of ABX was associated with a gradual disappearance of the CD4+ and CD4+CD8+ subset of gut intraepithelial lymphocytes (IELs). This IEL subset is microbiota-dependent and is absent in germ-free mice. Relative abundance of Lactobacillus reuteri correlated with frequencies of CD4+CD8+ IELs and reduced EAU. Notably, IELs in culture suppressed antigen-specific activation of autoreactive T cells.
Project description:The gut of chicken is mostly colonised with Campylobacter jejuni and with 100 fold less C. coli. The competitive ability of C. coli OR12 over C. jejuni OR1 has been examined in experimental broiler chickens following the observation that C. coli replaced an established C. jejuni intestinal colonisation within commercial chicken flocks reared outdoors (El-Shibiny, A., Connerton, P.L., Connerton, I.F., 2005. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Applied Environmental Microbiology. 71, 1259-1266). Five independent DNA preps of C. jejuni RM1221 were labelled with Cy 5 independently and they were mixed well which was used as the control. OR1 and OR12 were labelled with Cy 3 independently and equal concentration of the control and sample DNA were used for hybridisation. Three biological replicates were done for each slide. The supplementary file (linked at the foot of this record) represents the averaged normalised values for each experimental condition (3replicates/experimental condition).
Project description:Recent evidence suggests an important role of the gut microbiome in early life on immune cell entraining. Using two independent transgenic (Tg) lines of Alzheimer’s disease, we have demonstrated that life-long antibiotic (ABX)-perturbation of the gut microbiome is associated with reduced amyloid beta (Ab) plaque pathology and microglial phenotypes in male mice. Furthermore, fecal microbiota transfer (FMT) from age-matched APPPS1-21 Tg mice into long-term ABX-treated male APPPS1-21 mice partially restored amyloidosis and microgliosis, thus establishing causality. in the current studies, we planned to investigate the transcriptome profiles in APPPS1-21 mice treated with short-term abx (PND14-21) compared with vehicle treated groups in genotype-, sex- and time -dependent manner. Most importantly, we also investigated if fecal microbiota transplants from age-matched Tg male mice into short-term abx (PND14-21)-treated male mice restores brain transcriptomes to that of obsreved in vehicle-treated male mice at 9 weeks of age.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:It was recently revealed that gut microbiota promote amyloid-beta (Aβ) burden in mouse models of Alzheimer’s disease (AD). However, the underlying mechanisms when using either germ-free (GF) housing conditions or treatments with antibiotics (ABX) remained unknown. In this study, we show that GF and ABX-treated 5x familial AD (5xFAD) mice developed attenuated hippocampal Aβ pathology and associated neuronal loss, and thereby delayed disease-related memory deficits. While Ab production remained unaffected in both GF and ABX-treated 5xFAD mice, we noticed in GF 5xFAD mice enhanced microglial Aβ uptake at early stages of the disease compared to ABX-treated 5xFAD mice. Furthermore, RNA-sequencing of hippocampal microglia from SPF, GF and ABX-treated 5xFAD mice revealed distinct microbiota-dependent gene expression profiles associated with phagocytosis and altered microglial activation states. Taken together, we observed that constitutive or induced microbiota modulation in 5xFAD mice differentially controls microglial Aβ clearance mechanisms preventing neurodegeneration and cognitive deficits.
2020-07-15 | GSE154428 | GEO
Project description:gut microbial diversity in broiler