Project description:The aim of this study was to investigate microRNA expression pattern and its functional relevance on the commitment toward mucosal differentiation and on IgE-mediated activation of mast cells. To identify microRNA genes the expression of which change during the differentiation and activation of murine primary mast cells in vitro, the putative committed progenitors (c-kit+ cells isolated on day 6 from differentiating cultures), immature mast cells (BMMC), mucosal-type mast cells (MMC), and IgE-activated mast cells were compared by Agilent microRNA array.
Project description:The aim of this study was to investigate microRNA expression pattern and its functional relevance on the commitment toward mucosal differentiation and on IgE-mediated activation of mast cells. To identify microRNA genes the expression of which change during the differentiation and activation of murine primary mast cells in vitro, the putative committed progenitors (c-kit+ cells isolated on day 6 from differentiating cultures), immature mast cells (BMMC), mucosal-type mast cells (MMC), and IgE-activated mast cells were compared by Agilent microRNA array. RNA was isolated by miRNeasy (Qiagen) from: 1) c-kit+ cells, isolated from differentiating cultures (in the presence of IL3 and SCF) derived from the bone marrow using MACS column purification, 2) immature BMMCs obtained by cultivation of bone marrow cells in the presence of IL3 and SCF for 4 weeks, 3) mucosal-type mast cells by additional differentiation of immature BMMCs for 5 days by supplementation of IL9 and TGFbeta, and 4) activated mast cells by presensitization with anti-DNP IgE followed by IgE-crosslinking by DNP-antigen challenge for 2 hours. Agilent microRNA microarray was run on these experimental groups. Four biological replicates were included in every experimental group.
Project description:Intestinal mucosal mast cells are critically involved in the development of food-induced allergic disorders. However, factors that induce differentiation of mucosal mast cells in the intestinal mucosa are largely unknown. To identify factors involved in mucosal mast cell differentiation, we compared the gene expression profiles between mucosal mast cells isolated from the small intestine and bone marrow-derived mast cells cultured in the presence of TGF-β or Notch ligand. Mucosal mast cells were isolated from the small intestine of naïve BALB/c mice by flow cytometry. Bone marrow-derived mast cells (BMMCs) were generated by culturing BALB/c bone marrow cells with murine interleukin-3 and stem cell factor for 3-4 weeks, and then cells were cultured for 6 days in the presence or absence of TGF-β or Delta-like 1 (Dll1), which is a Notch ligand. Total RNAs extracted from these cells were processed and hybridized to Affymetrix GeneChips.
Project description:Intestinal mucosal mast cells are critically involved in the development of food-induced allergic disorders. However, factors that induce differentiation of mucosal mast cells in the intestinal mucosa are largely unknown. To identify factors involved in mucosal mast cell differentiation, we compared the gene expression profiles between mucosal mast cells isolated from the small intestine and bone marrow-derived mast cells cultured in the presence of TGF-β or Notch ligand.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.