Project description:Bovine tuberculosis (bTB), caused by Mycobacterium bovis (Mycobacterium tuberculosis complex), is a zoonotic disease that affects cattle and wildlife worldwide. In some regions of Spain, Iberian red deer (Cervus elaphus hispanicus) can serve as reservoir of infection, thus increasing the risk of human and cattle exposure and infection. Mesenteric lymph nodes are naturally infected with M. bovis in Iberian red deer, in which the digestive route of infection is particularly important in Mediterranean Spain. In this study we characterized the differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer naturally infected with M. bovis using a Ruminant Immuno-inflammatory Gene Universal Array (RIGUA) and real-time RT-PCR. Of the 600 genes that were analyzed in the microarray, 157 showed ? 1.2 fold changes in expression in infected or uninfected deer and 17 genes displayed an expression fold change greater than 1.7 with a P-value ? 0.05 and were selected for further analysis. These genes included tight junction proteins (Z02 and occluding), IL-11R, bactenecin, CD62L, CD74, desmoglein, IgA and IgM that constitute new findings and suggest new mechanisms by which M. bovis may modulate host inflammatory and immune responses. Identification of genes differentially expressed in animals and tissues naturally infected with M. bovis contributes to our basic understanding of the mechanisms of pathogenesis and protective immunity to mycobacterial infections and may have important implications for future functional genomic and vaccine studies to aid in the control of bTB in deer and other wildlife reservoir species. Mesenteric lymph node RNA from four different uninfected Iberian red deer stags and two Iberian red deer stags infected with Mycobacterium bovis. Infected animals were naturally infected with M. bovis. All animals were hunter-harvested and the tissues retrieved 2-6 hrs after animal hunting.
Project description:Bovine tuberculosis (bTB), caused by Mycobacterium bovis (Mycobacterium tuberculosis complex), is a zoonotic disease that affects cattle and wildlife worldwide. In some regions of Spain, Iberian red deer (Cervus elaphus hispanicus) can serve as reservoir of infection, thus increasing the risk of human and cattle exposure and infection. Mesenteric lymph nodes are naturally infected with M. bovis in Iberian red deer, in which the digestive route of infection is particularly important in Mediterranean Spain. In this study we characterized the differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer naturally infected with M. bovis using a Ruminant Immuno-inflammatory Gene Universal Array (RIGUA) and real-time RT-PCR. Of the 600 genes that were analyzed in the microarray, 157 showed ≥ 1.2 fold changes in expression in infected or uninfected deer and 17 genes displayed an expression fold change greater than 1.7 with a P-value ≤ 0.05 and were selected for further analysis. These genes included tight junction proteins (Z02 and occluding), IL-11R, bactenecin, CD62L, CD74, desmoglein, IgA and IgM that constitute new findings and suggest new mechanisms by which M. bovis may modulate host inflammatory and immune responses. Identification of genes differentially expressed in animals and tissues naturally infected with M. bovis contributes to our basic understanding of the mechanisms of pathogenesis and protective immunity to mycobacterial infections and may have important implications for future functional genomic and vaccine studies to aid in the control of bTB in deer and other wildlife reservoir species. Keywords: disease state analysis
Project description:Anaplasma and Mycobacterium species are known to modify gene expression in ruminants. The objectives of this study were (a) to characterize global gene expression profiles in European red deer (Cervus elaphus) in response to Anaplasma ovis and A. ovis/Mycobacterium bovis/M. avium sub. paratuberculosis (MAP) infections, (b) to compare the expression of immune response genes between A. ovis- and A. ovis/M. bovis/MAP-infected deer, and (c) to characterize the differential expression of immune response genes identified in red deer in cattle infected with M. bovis and A. marginale. The results of this study showed that global gene differential expression in A. ovis- and A. ovis/M. bovis/MAP-infected deer results in the modification of common and pathogen-specific cellular biological processes. The differential expression of host immune response genes also showed pathogen-specific signatures and the effect of infection with multiple pathogens on red deer host immune response. These results suggested that intracellular bacteria from Anaplasma and Mycobacterium genera use similar mechanisms to infect and multiply within ruminant host cells while pathogen-specific mechanisms underline differences that could contribute to disease characterization and diagnosis in ruminants.
Project description:Anaplasma and Mycobacterium species are known to modify gene expression in ruminants. The objectives of this study were (a) to characterize global gene expression profiles in European red deer (Cervus elaphus) in response to Anaplasma ovis and A. ovis/Mycobacterium bovis/M. avium sub. paratuberculosis (MAP) infections, (b) to compare the expression of immune response genes between A. ovis- and A. ovis/M. bovis/MAP-infected deer, and (c) to characterize the differential expression of immune response genes identified in red deer in cattle infected with M. bovis and A. marginale. The results of this study showed that global gene differential expression in A. ovis- and A. ovis/M. bovis/MAP-infected deer results in the modification of common and pathogen-specific cellular biological processes. The differential expression of host immune response genes also showed pathogen-specific signatures and the effect of infection with multiple pathogens on red deer host immune response. These results suggested that intracellular bacteria from Anaplasma and Mycobacterium genera use similar mechanisms to infect and multiply within ruminant host cells while pathogen-specific mechanisms underline differences that could contribute to disease characterization and diagnosis in ruminants. A gene expression pre analysis was made in deers naturally infected with Anaplasma ovis and Mycobacterium complex using Affymetrix Bos taurus microarray to detect differentialy expressed genes. The immune response genes with variation in expression were analyzed by real time RT-PCR in the same samples and a bigger group of deers. A real time RT-PCR analysis was also made in Bos taurus naturally infected with Anaplasma marignale.
Project description:The aim of this study is to determine differential gene expression on skin biopsies of experimentally BTV-infected hinds (Cervus elaphus) using serotypes 1 and 8 to understand the possible role that these genes play during BTV infection. Understanding the strategies used by this virus for their cellular uptake, and detection of differentially expressed transcripts in experimentally infected hosts, can provide identification of detailed information that might be used to prevent infection. Four seven-month-old red deer Cervus elaphus were kept in a P3 facility to be experimentally infected with Bluetongue virus, and 4 more red deer were kept as controls. Skin biopsies were taken at 14 days post-infection to determine gene expression in response to this virus.
Project description:The aim of the current study was to analyse differences in liver proteomes between F. magna infected and control, apparently healthy, red deer using a label-based high- throughput quantitative proteomics approach.