Project description:To further elucidate the gene expression profile alterations induced by HCV infection, we have employed the Arraystar Human LncRNA Microarray V3.0 as a discovery platform to identify genes associated with HCV infection. Human hepatocellular carcinoma cell line Huh7.5.1 was infected with HCVcc for 6 h. The gene expression pattern of HCVcc-infected Huh7.5.1 was compared with that of uninfected Huh7.5.1 to identify the differentially expressed genes induced by HCV infection.
Project description:Differential expression study of lncRNAs (long non-coding RNAs) and mRNAs in HCV infection. For this we infected Huh7.5 cells with HCV (JFH-1) virus and control cells were mock infected. 48h post infection we isolated total RNA using qiagen RNeasy kit as per manufacturer's protocol. The total RNA was then subjected to microarray for both lncRNAs and mRNAs. The resultant profile can be used to compare gene expression in HCV infection versus mock infected cells.
Project description:Hepatic complications of HCV infection, including fibrosis and cirrhosis are accelerated in HIV-infected individuals. Although liver biopsy remains the gold standard for staging HCV-associated liver disease, this test can result in serious complications and is subject to sampling error. These challenges have prompted a search for non-invasive methods for liver fibrosis staging. To this end, we compared serum proteome profiles at different stages of fibrosis in HIV/HCV co- and HCV mono-infected patients using SELDI-TOF MS.
Project description:Hepatitis C virus (HCV) is a global problem. To better understand HCV infection researchers employ in vitro HCV cell-culture (HCVcc) systems that use Huh-7 derived hepatoma cells that are particularly permissive to HCV infection. A variety of hyper-permissive cells have been subcloned for this purpose. In addition, subclones of Huh-7 which have evolved resistance to HCV are available. However, the mechanisms of susceptibility or resistance to infection among these cells have not been fully determined. In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant to HCV infection we performed genome-wide expression analyses of six Huh-7 derived cell cultures (Huh-7, Huh-7.5.1, Huh-7.5.1c2, R1.09, R1.10 and R2.1) R that have different levels of permissiveness to infection. A great number of genes, representing a wide spectrum of functions are differentially expressed between cells. To focus our investigation, we identify host proteins from HCV replicase complexes, perform gene expression analysis of three HCV infected cells (infected Huh-7, Huh-7.5.1 and Huh-7.5.1c2) and conduct a detailed analysis of differentially expressed host factors by integrating a variety of data sources. Our results demonstrate that changes relating to susceptibility to HCV infection in hepatoma cells are linked to the innate immune response, secreted signal peptides and host factors that have a role in virus entry and replication. This work identifies both known and novel host factors that may influence HCV infection. Our findings build upon current knowledge of the complex interplay between HCV and the host cell, which could aid development of new antiviral strategies. Six Huh-7 derived hepatoma cell types that have different levels of susceptibility to HCV infection in cell culture are used: Huh-7, Huh-7.5.1, Huh-7.5.1c2, R1.09, R1.10 and R2.1. Of these the first three (label starting Huh are susceptible to HCV infection and the latter three (label starting R are resistant to HCV infection. All cell types are derived from Huh-7. Huh-7.5.1 is a subclone of Huh-7.5 that in turn is a subclone of Huh-7. Huh-7.5.1c2 is a subclone of Huh-7.5.1. R1.09 and R1.10 are subclones of R1 that is inturn a sublone of Huh-7.5,1. R2.1 is a subclone of Huh-7.5.1.
Project description:Hepatitis C virus (HCV) remains a significant public health threat as new 1.75 million HCV infections emerged worldwide. The majority of these infections become persistently infected, while around 30 % spontaneously eliminate the virus. Clinical factors for viral clarification are related to HCV interaction with host immune system, but little is known about the consequences after HCV spontaneous resolution. These individuals are difficult to recruit and study as acute infection is usually asymptomatic, and they will not be identified unless it progress to chronic infection. The study of peripheral blood mononuclear cells (PBMCs) of these patients is crucial, as PBMCs are one of the main HCV extrahepatic reservoirs, and its transcriptional profile provide us information of innate and adaptive immune response against HCV infection. Our research shows novel insight on molecular consequences of spontaneous resolution after an acute HCV infection. 96 Individuals with different HCV exposure status were recruited: spontaneous resolved, chronic infected and healthy controls; and the microRNA profile of their PBMCs were analyzed. Our results indicate similar disruption of miRNA expression on HCV chronic patients and those who spontaneously clarified the infection, compared to control patients. The disrupted miRNAs formed a signature of 21 miRNAs that mainly regulate lipid metabolism. This is the first report showing miRNA profile similarities between chronic HCV patients and spontaneous resolved individuals. Thus, our results suggest that HCV infection promotes molecular alterations in PBMCs that will last longer after HCV spontaneous eradication. This evidences open up new prospects in the management of individuals who spontaneously clarified infection, as they should be monitored and followed to dismiss future HCV-related complications, such us liver diseases complications. The identified miRNA signature could be used as biomarker to monitor HCV fingerprint on HCV-exposed patients.
Project description:Hepatitis C virus (HCV) is a global problem. To better understand HCV infection researchers employ in vitro HCV cell-culture (HCVcc) systems that use Huh-7 derived hepatoma cells that are particularly permissive to HCV infection. A variety of hyper-permissive cells have been subcloned for this purpose. In addition, subclones of Huh-7 which have evolved resistance to HCV are available. However, the mechanisms of susceptibility or resistance to infection among these cells have not been fully determined. In order to elucidate mechanisms by which hepatoma cells are susceptible or resistant to HCV infection we performed genome-wide expression analyses of six Huh-7 derived cell cultures (Huh-7, Huh-7.5.1, Huh-7.5.1c2, R1.09, R1.10 and R2.1) R that have different levels of permissiveness to infection. A great number of genes, representing a wide spectrum of functions are differentially expressed between cells. To focus our investigation, we identify host proteins from HCV replicase complexes, perform gene expression analysis of three HCV infected cells (infected Huh-7, Huh-7.5.1 and Huh-7.5.1c2) and conduct a detailed analysis of differentially expressed host factors by integrating a variety of data sources. Our results demonstrate that changes relating to susceptibility to HCV infection in hepatoma cells are linked to the innate immune response, secreted signal peptides and host factors that have a role in virus entry and replication. This work identifies both known and novel host factors that may influence HCV infection. Our findings build upon current knowledge of the complex interplay between HCV and the host cell, which could aid development of new antiviral strategies. Six Huh-7 derived hepatoma cell types that have different levels of susceptibility to HCV infection in cell culture are used: Huh-7, Huh-7.5.1, Huh-7.5.1c2, R1.09, R1.10 and R2.1. Of these the first three (label starting Huh are susceptible to HCV infection and the latter three (label starting R are resistant to HCV infection. All cell types are derived from Huh-7. Huh-7.5.1 is a subclone of Huh-7.5 that in turn is a subclone of Huh-7. Huh-7.5.1c2 is a subclone of Huh-7.5.1. R1.09 and R1.10 are subclones of R1 that is inturn a sublone of Huh-7.5,1. R2.1 is a subclone of Huh-7.5.1. 39 samples are used. In every case there are 3 biological replicates, i.e., there are 13 unique conditions (39/3=13). These samples are subdivided between two studies: (1) A comparison of HCV infection resistant cells R1.09, R1.10 and R2 against HCV susceptible Huh-7.5.1. (2) A comparison of JFH1 HCV infected Huh-7, Huh-7.5.1 and Huh-7.5.1c2 cells versus their uninfected counterparts. In each case there are two uninfected counterparts, cells that were harvested after being in culture for 20 hours and cells that were harvested at the same time point as the infected cells, that is, at the peak time of infection. Peak times for infection vary between cells, depending on their susceptibility to infection: 168 hours for Huh-7, 120 hours for Huh-7.5.1 and 96 hours for Huh-7.5.1c2.
Project description:The aim of this study was to identify differential gene and protein expression associated with GBV-C that may be of importance in reduction of HCV-related liver disease. GB virus C (GBV-C) infection leads to improved outcomes in human immunodeficiency virus (HIV) infection. Furthermore, GBV-C has been shown to reduce hepatitis C virus (HCV)-related liver disease in HCV/HIV co-infection.
Project description:Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Coordinated sampling identified minimal gene dysregulation at six hours post infection (hpi) in PHHs. In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. In addition, we confirm that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection which can further reduce HCV RNA replication. We also detected infection-induced signatures of translational shutoff in PHHs - downregulation of ~90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.
Project description:CD8+ T cells play a central role in antiviral control. We used single cell RNA sequencing (scRNA-seq) to analyze the differences of HCV-specific CD8+ T cells isolated from subjects that are chronically infected by HCV, individuals that spontaneously resolved an acute HCV infection, and chronic HCV patients in treatment with direct-acting antiviral (DAA). We also profiled non-HCV virus-specific cells (CMV and FLU) to analyze the impact of HCV infection on the adaptive immune response.
Project description:TMT10plex global proteomics of HCV infected HuH7.5 cells or HCV infected humanized mouse livers. TMT channels were combined after labeling and separated off line with a highPH reverse phase fractionation into 24 fractions.