Project description:Arabidopsis, when grown under short day conditions (16 hours dark, 8 hours light, 22oC) develop extensive secondary thickened hypocotyls with both a vascular and cork cambium (Chaffey et al, 2002, Phys. Plant., 114:594-600). It has been found that once secondary xylem development is completed within the Arabidopsis hypocotyls, it closely resembles the structure of the wood of angiosperm trees (Chaffey et al, 2002, Phys. Plant., 114:594-600). We can utilise this model Arabidopsis tree to identify genes that are important for secondary cell wall formation in xylem cells and therefore important for wood development. Columbia plants were grown for 3 months under short day conditions and secondary thickened hypocotyls were snap-frozen in liquid nitrogen. RNA was isolated from these hypocotyls and submitted to NASC for probing against the ATH1-121501 full GeneChip. Keywords: growth_condition_design
Project description:Arabidopsis, when grown under short day conditions (16 hours dark, 8 hours light, 22oC) develop extensive secondary thickened hypocotyls with both a vascular and cork cambium (Chaffey et al, 2002, Phys. Plant., 114:594-600). It has been found that once secondary xylem development is completed within the Arabidopsis hypocotyls, it closely resembles the structure of the wood of angiosperm trees (Chaffey et al, 2002, Phys. Plant., 114:594-600). We can utilise this model Arabidopsis tree to identify genes that are important for secondary cell wall formation in xylem cells and therefore important for wood development. Columbia plants were grown for 3 months under short day conditions and secondary thickened hypocotyls were snap-frozen in liquid nitrogen. RNA was isolated from these hypocotyls and submitted to NASC for probing against the ATH1-121501 full GeneChip.
Project description:Arabidopsis, when grown under short day conditions (16 hours dark, 8 hours light, 22oC) develop extensive secondary thickened hypocotyls with both a vascular and cork cambium (Chaffey et al, 2002, Phys. Plant., 114:594-600). It has been found that once secondary xylem development is completed within the Arabidopsis hypocotyls, it closely resembles the structure of the wood of angiosperm trees (Chaffey et al, 2002, Phys. Plant., 114:594-600). We can utilise this model Arabidopsis tree to identify genes that are important for secondary cell wall formation in xylem cells and therefore important for wood development. Columbia plants were grown for 3 months under short day conditions and secondary thickened hypocotyls were snap-frozen in liquid nitrogen. RNA was isolated from these hypocotyls and submitted to NASC for probing against the ATH1-121501 full GeneChip. Experiment Overall Design: 2 samples
Project description:Plants in temperate regions have evolved mechanisms to survive sudden temperature drops. Previous reports have indicated that the cold acclimation mechanism is light-dependent and does not fully operate under a low light intensity. In these studies, plants were grown under a long-day photoperiod and were more sensitive to freezing stress. However, winter annuals like Arabidopsis thaliana Col-0 germinate in the fall, overwinter as rosettes, and therefore must acclimate under short photoperiods and low irradiance. The role of light intensity was analysed in plants grown under a short-day photoperiod at the growth stage 1.14. Plants were acclimated at 4 °C for seven days under 100 and 20 μmol m-2s-1 PPFD for control and limited-light conditions, respectively. All cold acclimated plants accumulated molecular markers reportedly associated with acquired freezing tolerance, including proline, sucrose, CBFs, and COR gene protein products dehydrins and low-temperature-responsive proteins LTIs. Observed changes indicated that low PPFD did not inhibit the cold acclimation process, and the freezing stress experiment confirmed similar survival rates. The molecular analysis found distinct PPFD-specific adaptation mechanisms that were manifested in contrasting content of anthocyanins, cytokinin conjugates, abundances of proteins forming photosystems, and enzymes of protein, energy, and ROS metabolism pathways. Finally, this study led to the identification of putative proteins and metabolite markers correlating with susceptibility to freezing stress of non-acclimated plants grown under low PPFD. Our data show that Arabidopsis plants grown under short-day photoperiod can be fully cold-acclimated under limited light conditions, employing standard and PPFD-specific pathways.
Project description:To understand which genes acts downstream AtHB1 affecting hypocotyl growth in Arabidopsis thaliana, we performed transcriptional profiles of 4-day-old seedlings grown in a short-day regime comparing wild-type with athb1-1 mutant plants. These results show that some of the AtHB1-regulated genes modulate cell elongation, particularly cell wall composition and elongation, or encode proteins that serve as a source of carbon, nitrogen, and sulfur for early seedling growth.