Project description:Pi availability is a significant limiting factor for plant growth in both natural and agricultural systems. To cope with such limiting conditions, plants have adapted developmental and biochemical strategies to enhance Pi acquisition and to avoid starvation. A myriad of genes that are involved in the regulation and display of these strategies have been identified. However, the possible epigenetic components regulating the phosphate starvation responses have not been thoroughly investigated. DNA methylation is a major epigenetic mark involved in diverse biological processes and it may play a critical role in Pi starvation stress adaptation, also changes in DNA methylation can lead to a unique gene expression pattern in response to specific developmental and environmental conditions. Here in we demonstrate that non-CpG DNA methylation is required for proper expression of a number of Pi-limitation responsive genes in Arabidopsis thaliana and results in altered morphologic and physiologic phosphate starvation responses.Our data suggest that DNA methylation is involved in the modulation of Pi starvation responses via the transcriptional regulation of a set of phosphate-starvation responsive genes. Analysis of 8 different treatments, 2 different Organs (Root and Shoot), 2 different Phosphate treatments (High Pi, Low Pi), 2 different Times (Short Term, Long Term), 2 biological replicates for treatment
Project description:Improving plant stress response holds great agricultural potential. One promising, yet speculative, possibility is the formation of plant stress memory facilitating enhanced responses to recurring stress. One possibility is the involvement of environmentally-induced variation in reversible chromatin marks, such as DNA methylation, leading to the altered regulation of underlying genetic elements that promote enhanced stress tolerance. Such potential has spurred numerous investigations yielding conflicting results, thus it remains unclear whether robust stress-induced chromatin variation can encode plant stress memory conveying enhanced stress tolerance. Herein we investigate for the possibility of stress-induced alterations in DNA methylation to convey stress memory, both on mitotic and transgenerational timescales, such that previously stressed plants show improved stress tolerance with correlated alterations in DNA methylation at stress-responsive loci. We find that although the experience of stress may be stored mitotically, it does not appear to be transmitted meiotically and is independent of DNA methylation changes. Overall, the DNA methylome appears to be robust against stress-induced variation and is unlikely to contribute to any form of stress memory.
Project description:DNA methylation is an important biological form of epigenetic modification, playing key roles in plant development and environmental responses. In this study, we examined single-base resolution methylomes of Populus under control and drought stress conditions using high-throughput bisulfite sequencing for the first time. Our data showed methylation levels of methylated cytosines, upstream2kp, downstream2kb, and repeatitive sequences significantly increased after drought treatment in Populus. Interestingly, methylation in 100 bp upstream of the transcriptional start site (TSS) repressed gene expression, while methylations in 100 – 2000bp upstream of TSS and within the gene body were positively associated with gene expression. Integrated with the transcriptomic data, we found that all cis-splicing genes were non-methylated, suggesting that DNA methylation may not associate with cis-splicing. However, our results showed that 80% of trans-splicing genes were methylated. Moreover, we found 1156 transcription factors (TFs) with reduced methylation and expression levels and 690 TFs with increased methylation and expression levels after drought treatment. These TFs may play important roles in Populus drought stress responses through the changes of DNA methylation. Taken together, these findings may provide valuable new insight into our understanding of the interaction between gene expression and methylation of drought responses in Populus. Methylomes of Poplar response to drought
Project description:In this study, we aim to generate genome-scale DNA methylation profiles at single-base resolution in different rice cultivars (IR64, Nagina 22 and Pokkali) under control and stress conditions. Using high-throughput whole genome bisulfite Sequencing, we generated DNA methylation maps covering the vast majority of cytosines in the rice genome. More than 152 million high quality reads were obtained for each tissue sample using Illumina platform. We discovered extensive DNA methylation in rice cultivars, identified the context and level of methylation at each site.Numerous differentially methylated regions (DMRs) among different cultivars under control and stress conditions were identified and many of them were associated with differential gene expression. The high resolution methylome maps of different rice genotypes and differentially methylated regions will serve as reference for understanding the epigenetic regulation of stress responses in plants. Whole genome bisulfite sequencing of seven control/stressed samples from three rice cultivars (IR64, N22 and Pokkali)
Project description:Post-embryonic plant development must be coordinated in response to and with environmental feedback. Development of above-ground organs is orchestrated from stem cells in the center of the shoot apical meristem (SAM). Heat can pose significant abiotic stress to plants and induce a rapid heat shock response, developmental alterations, chromatin decondensation, and activation of transposable elements (TEs). However, most plant heat-stress studies are conducted with seedlings, and we know very little about cell-type-specific responses. Here we use fluorescent-activated nuclear sorting to isolate and characterize stem cells of wild type and mutants defective in TE defense and chromatin compaction after heat shock and after a long recovery. Our results indicate that stem cells can suppress heat shock response pathways to maintain developmental programs. Furthermore, mutants defective in DNA methylation fail to recover efficiently from heat stress and persistently activate heat shock factors and heat-inducible TEs. Heat stress also induces DNA methylation epimutations, especially in the CHG context, and we find hundreds of DNA methylation changes three weeks after stress. Our results underline the importance of disentangling cell type-specific environmental responses for understanding plant development.
Project description:Post-embryonic plant development must be coordinated in response to and with environmental feedback. Development of above-ground organs is orchestrated from stem cells in the center of the shoot apical meristem (SAM). Heat can pose significant abiotic stress to plants and induce a rapid heat shock response, developmental alterations, chromatin decondensation, and activation of transposable elements (TEs). However, most plant heat-stress studies are conducted with seedlings, and we know very little about cell-type-specific responses. Here we use fluorescent-activated nuclear sorting to isolate and characterize stem cells of wild type and mutants defective in TE defense and chromatin compaction after heat shock and after a long recovery. Our results indicate that stem cells can suppress heat shock response pathways to maintain developmental programs. Furthermore, mutants defective in DNA methylation fail to recover efficiently from heat stress and persistently activate heat shock factors and heat-inducible TEs. Heat stress also induces DNA methylation epimutations, especially in the CHG context, and we find hundreds of DNA methylation changes three weeks after stress. Our results underline the importance of disentangling cell type-specific environmental responses for understanding plant development.
Project description:Microbe associated molecular pattern (MAMP)-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. Although several MTI responses can be measured in different plant species, their magnitude is likely plant-species specific and even cultivar specific. In this work, we show that the variation in gene expression, either under untreated or treated conditions, is inherited. In addition, genes with potential additive and non-additive effects were identified in two mapping lines, several of these with a potential function in the control of the innate immunity. Likewise, we observed that some genes differentially expressed across the parental and mapping lines showed different DNA methylation patterns. Finally, a gene regulatory module analysis identified key networks that likely control soybean innate immunity. The data presented represent the basis for further functional analysis that can lead to a better understanding of the soybean innate immunity response.
Project description:The C-REPEAT-BINDING FACTOR (CBF) pathway has important roles in plant responses to cold stress. Previous research documented that constitutively expressed upstream transcription factors are activated by cold stress to induce the expression of CBF genes and the resulting CBF proteins trigger the expression of downstream cold responsive genes that confer freezing tolerance. In the present study, we found that dysfunction of RNA-DIRECTED DNA METHYLATION 4 (RDM4), which encodes a protein that associates with RNA polymerases Pol IV and Pol V as well as Pol II, and is required for RNA-directed DNA methylation (RdDM) and proper plant development in Arabidopsis, reduced chilling and freezing tolerance in Arabidopsis as evidenced by decreased survival and increased electrolyte leakage under cold stress conditions. CBFs and CBF regulon genes were down-regulated in rdm4 but not nrpe1 (the largest subunit of PolV) mutant plants, suggesting that the role of RDM4 in cold stress responses is independent of the RdDM pathway. Overexpression of RDM4 increased the expression of CBFs and CBF regulon genes and decreased cold-induced membrane injury. The rdm4 mutants exhibited decreased antioxidant enzyme activities and increased accumulation of reactive oxygen species. Microarray analysis indicated that a great proportion of genes affected by rdm4 overlapped with those affected by CBF2 and CBF3 in Arabidopsis. Chromatin immunoprecipitation (ChIP) results suggested that RDM4 is important for Pol II occupancy at the promoters of CBF genes but not the promoters of up-stream regulators of CBFs. Together, these data indicate that RDM4 acts as a component of a Pol II transcription complex that regulates CBF gene expression and cold stress resistance in Arabidopsis. Two-week-old seedlings of rdm4 and C24 WT plant were subjected to chilling treatment for 0, 3, and 48 h treatments.Plant materials were then collected for RNA extraction.
Project description:The C-REPEAT-BINDING FACTOR (CBF) pathway has important roles in plant responses to cold stress. Previous research documented that constitutively expressed upstream transcription factors are activated by cold stress to induce the expression of CBF genes and the resulting CBF proteins trigger the expression of downstream cold responsive genes that confer freezing tolerance. In the present study, we found that dysfunction of RNA-DIRECTED DNA METHYLATION 4 (RDM4), which encodes a protein that associates with RNA polymerases Pol IV and Pol V as well as Pol II, and is required for RNA-directed DNA methylation (RdDM) and proper plant development in Arabidopsis, reduced chilling and freezing tolerance in Arabidopsis as evidenced by decreased survival and increased electrolyte leakage under cold stress conditions. CBFs and CBF regulon genes were down-regulated in rdm4 but not nrpe1 (the largest subunit of PolV) mutant plants, suggesting that the role of RDM4 in cold stress responses is independent of the RdDM pathway. Overexpression of RDM4 increased the expression of CBFs and CBF regulon genes and decreased cold-induced membrane injury. The rdm4 mutants exhibited decreased antioxidant enzyme activities and increased accumulation of reactive oxygen species. Microarray analysis indicated that a great proportion of genes affected by rdm4 overlapped with those affected by CBF2 and CBF3 in Arabidopsis. Chromatin immunoprecipitation (ChIP) results suggested that RDM4 is important for Pol II occupancy at the promoters of CBF genes but not the promoters of up-stream regulators of CBFs. Together, these data indicate that RDM4 acts as a component of a Pol II transcription complex that regulates CBF gene expression and cold stress resistance in Arabidopsis. Two-week-old seedlings of 35S::RDM4 and Col WT plant were subjected to chilling treatment for 0, 3, and 48 h treatments.Plant materials were then collected for RNA extraction.