Project description:We compared the microbiota of paired mouse caecal contents and faeces by applying a multi-omic approach, including 16S rDNA sequencing, shotgun metagenomics, and shotgun metaproteomics. The aim of the study was to verify whether faecal samples are a reliable proxy for the mouse colonic luminal microbiota, as well as to identify changes in taxonomy and functional activity between caecal and faecal microbial communities, which have to be carefully considered when using stool as sample for mouse gut microbiota investigations.
Project description:Comparison of probe-target dissociations of probe Eub338 and Gam42a with native RNA of P. putida, in vitro transcribed 16s rRNA of P. putida, in vitro transcribed 16S rRNA of a 2,4,6-trinitrotoluene contaminated soil and an uncontaminated soil sample. Functional ANOVA revealed no significant differences in the dissociation curves of probe Eub338 when hybridised to the different samples. On the opposite, the dissociation curve of probe Gam42a with native RNA of P. putida was significantly different than the dissociation curves obtained with in vitro transcribed 16S rRNA samples. Keywords: Microbial diversity, thermal dissociation analysis, CodeLink microarray
Project description:Prostate of SD rats was injected with 0.1 ml 1% carrageenan to induce chronic nonbacterial prostatitis, and the control rats injected with sterile saline. Then, the cecal contents were collected for 16S rDNA sequencing.
Project description:<p>Heat stress is an important issue in dairy cattle feeding management affecting summer health and economic efficiency. In recent years, global climate change has led to an increase in atmospheric CO2 content and average daily temperature, making heat stress a major challenge in dairy farming. This experiment combined 16S rDNA sequencing, metagenomic sequencing and metabolomic analysis. In this experiment, 10 cows each of growing heifers, heifers and lactating cows were selected for sample collection in April and August. Ruminal fluid was collected and filtered through gauze, which was immediately transferred to liquid nitrogen prior to macrogenomic, 16S rDNA sequencing and metabolomic analyses.</p>
Project description:The relationship between the microbial changes with clinical-pathological outcomes are still far from being conclusive. Herein, we investigate the ability of metagenomics (MG) and metaproteomics (MP) saliva data in distinguishing C, L0 and L1 patients. For that, we combined two strategies using MG analysis using 16S rDNA sequencing of saliva cells, and MP analysis using liquid chromatography tandem mass spectrometry of saliva supernatant and cells.