Project description:Ssr4 was experimentally proven to be required for radial growth, aerial conidation, insect infection and virulence-related cellular events in the insect mycopathogen Beauveria bassiana. For in-depth insight into the essential role of Ssr4 in the insect mycopathogen, transcriptomic analysis was carried out via high throughput sequencing (RNA-Seq), resulting in nearly one fourth of the whole genome differentially expressed in the Dssr4 mutant versus wild-type strain.
Project description:Mitochondrial metabolic remodeling is a hallmark of the Trypanosoma brucei digenetic life cycle since the insect stage utilizes the cost-effective oxidative phosphorylation to generate ATP, while bloodstream cells switch to less energetically efficient aerobic glycolysis. Due to difficulties in acquiring enough parasites from the tsetse fly vector for biochemical analysis, the dynamics of the parasite´s mitochondrial metabolic rewiring in the vector have remained obscure. Here, we took advantage of in vitro-induced differentiation to follow changes at the RNA levels.
Project description:Insect pathogenic fungus Beauveria bassiana in one of the best studied insect biocontrol fungus, which infects insects by cuticle penetration. After breaking the cuticles, the fungus will propagate in insect hemocoel and kill insect hosts. It has also been found that the mycelia of B. bassiana can penetrate plant tissues to reach insect inside plant, e.g. corn borer (Ostrinia furnacalis), but do not cause damage to plants. The mechanism of fungal physiological plasticity is poorly understood. To accompany our genome sequencing work of B. bassiana strain ARSEF 2860, fungal transcriptional responses to different niches were studied using an Illumina RNA_seq technique. To examine fungal response to insect cuticle, conidia were inoculated on locust hind wings for 24 hours before used for RNA extraction. To evaluate fungal adaptation to insect hemocole, the fifth instar larvae of cotton bollworms were injected with spore suspension and fungal cells isolated by centrifugation in a step gradient buffer. To unveil the mechanism of interaction with plants, the fungus was grown in corn root exudates for 24 hours. After RNA sequencing, around three million tags were acquired for each sample and fungal transcriptional profiles were compared.
Project description:ChIP-seq data characterizing the occupancy of TFAM over the mitochondrial and nuclear genomes in HeLa cells. Characterization of mitochondrial and nuclear genome-wide TFAM binding in HeLa cells