Project description:Tumors often harbor several genetic aberrations at both RNA and DNA level. Integration of expression data with copy number changes represents a powerful strategy to investigate genes involved in tumorigenesis. Here we describe a fluorescent array-based Comparative Genomic Hybridization protocol to be used on a commercial microarray platform optimized to detect cancer-related gene expression. This method will be valuable to use a single low-density array platform monitoring gene expression and copy number assessment in parallel. Keywords: Comparative genomic hybridization, neuroblastoma
Project description:Genomic DNA from sporadic breast tumours was isolated and analysed using array CGH. The NKI 1MB BAC/PAC micro array was used to identify chromosomal aberrations of all tumours. Keywords: sporadic breast tumour, CGH
Project description:Genomic DNA from sporadic breast tumours was isolated and analysed using array CGH. The NKI 1MB BAC/PAC micro array was used to identify chromosomal aberrations of all tumours. Other profiles are located at: GSE9114 Keywords: sporadic breast tumour, CGH.
Project description:We present the first computational approach to reconstruct the sequence of copy number alterations driving carcinogenesis from the analysis of several tumor samples of a same patient. Applied to BAC array-CGH and SNP array data from bladder and breast cancers, this method proved highly valuable to establish the clonal relationships between primary tumors and recurrences and to identify the chromosome aberrations at the initiation of tumorigenesis.
Project description:We present the first computational approach to reconstruct the sequence of copy number alterations driving carcinogenesis from the analysis of several tumor samples of a same patient. Applied to BAC array-CGH and SNP array data from bladder and breast cancers, this method proved highly valuable to establish the clonal relationships between primary tumors and recurrences and to identify the chromosome aberrations at the initiation of tumorigenesis. Keywords: Comparative Genomic Hybridization
Project description:HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group. Genome-wide DNA copy number profiling, using BAC array comparative genomic hybridization (aCGH) were performed on 200 tumors with mixed clinical characteristics and amplification of HER2. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number aberrations (CNAs) in HER2+ tumors. This analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer.
Project description:HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group. Genome-wide DNA copy number profiling, using BAC array comparative genomic hybridization (aCGH) were performed on 200 tumors with mixed clinical characteristics and amplification of HER2. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number aberrations (CNAs) in HER2+ tumors. This analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer. Genomic profiling of 200 breast tumors using tiling BAC aCGH (32K, 33K and 38K). A number of cases were hybridized as replicates or dye-swaps.
Project description:We present the first computational approach to reconstruct the sequence of copy number alterations driving carcinogenesis from the analysis of several tumor samples of a same patient. Applied to BAC array-CGH and SNP array data from bladder and breast cancers, this method proved highly valuable to establish the clonal relationships between primary tumors and recurrences and to identify the chromosome aberrations at the initiation of tumorigenesis. This SuperSeries is composed of the SubSeries listed below.
Project description:We performed array CGH in high-risk neuroblastoma tumors in order to compare genome aberrations with expression of small non-coding RNAs.
Project description:We conducted microarray-based comparative genomic hybridization (array-CGH) with a DNA chip carrying 2,464 BAC clones to examine genomic aberrations of 236 neuroblastomas (112 sporadic and 124 mass screening-detected). In paralell, gene-expression profiling was also performed by using in-house cDNA microarrays. Keywords: Comparative genomic hybridization