Project description:To investigate the possible impact of MOK in microglial immune responses, we tested the effect of LPS treatment in MOK-KO (H14) vs. WT SIM-A9 cells.
Project description:To investigate the possible impact of MOK in microglial immune responses, we tested the effect of MOK-inhibition with the chemical compound C13, in LPS-stimulated microglial cells.
Project description:Microglial cell activation has been linked to many neurodegenerative diseases. Upon stimulation by lipopolysaccharide (LPS), a number of proteins involved in inflammatory and oxidative pathways are activated. Production of nitric oxide has been regarded as a signature marker of inflammatory responses. Our recent studies demonstrated the effects of docosahexaenoic acid (DHA) to inhibit the LPS-induced inflammatory responses in BV-2 microglial cells. DHA also can upregulate the anti-oxidative pathway involving nuclear factor erythroid 2-Like 2 (Nrf2) and synthesis of heme oxygenase-1 (HO-1), a potent anti-oxidative enzyme. In order to further understand the proteins involved, this study used a label-free quantitative proteomics approach to examine effects of DHA and LPS on proteins and signaling pathways in microglial cells.
Project description:Background: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson’s disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. Methods: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-hour intraperitoneal injection with LPS. For translational perspectives, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). Results: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 hours after acute inflammation, as also observed in BMDMs. Conclusions: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.
Project description:Background: Specific microglia responses are thought to contribute to the development and progression of neurodegenerative diseases, including Parkinson’s disease (PD). However, the phenotypic acquisition of microglial cells and their role during the underlying neuroinflammatory processes remain largely elusive. Here, according to the multiple-hit hypothesis, which stipulates that PD etiology is determined by a combination of genetics and various environmental risk factors, we investigate microglial transcriptional programs and morphological adaptations under PARK7/DJ-1 deficiency, a genetic cause of PD, during lipopolysaccharide (LPS)-induced inflammation. Methods: Using a combination of single-cell RNA-sequencing, bulk RNA-sequencing, multicolor flow cytometry and immunofluorescence analyses, we comprehensively compared microglial cell phenotypic characteristics in PARK7/DJ-1 knock-out (KO) with wildtype littermate mice following 6- or 24-hour intraperitoneal injection with LPS. In a translational approach, we conducted corresponding analyses in human PARK7/DJ-1 mutant induced pluripotent stem cell (iPSC)-derived microglia and murine bone marrow-derived macrophages (BMDMs). Results: By excluding the contribution of other immune brain resident and peripheral cells, we show that microglia acutely isolated from PARK7/DJ-1 KO mice display a distinct phenotype, specially related to type II interferon and DNA damage response signaling, when compared with wildtype microglia, in response to LPS. We also detected discrete signatures in human PARK7/DJ-1 mutant iPSC-derived microglia and BMDMs from PARK7/DJ-1 KO mice. These specific transcriptional signatures were reflected at the morphological level, with microglia in LPS-treated PARK7/DJ-1 KO mice showing a less amoeboid cell shape compared to wildtype mice, both at 6 and 24 hours after acute inflammation, as also observed in BMDMs. Conclusions: Taken together, our results show that, under inflammatory conditions, PARK7/DJ-1 deficiency skews microglia towards a distinct phenotype characterized by downregulation of genes involved in type II interferon signaling and a less prominent amoeboid morphology compared to wildtype microglia. These findings suggest that the underlying oxidative stress associated with the lack of PARK7/DJ-1 affects microglia neuroinflammatory responses, which may play a causative role in PD onset and progression.
Project description:Transcriptional profiling of BV-2 microglial cells comparing control untreated BV-2 cells with LPS-treated BV-2 cells or obovatol/LPS-treated BV-2 cells. Objective was to determine the effect of obovatol on LPS-induced gene expression in microglia.
Project description:This dataset contains the RNA-seq data generated to investigate the mechanism of TOP1 inhibitor topotecan (TPT)'s role of anti-inflammation in microglial. RNA from mouse microgial cells, cells with LPS treatment to induce inflammation, and cells with LPS and TPT treatment were harvest and processed with polyA-tail enrichment RNA library preparation.