Project description:Optimization of broiler chicken breast muscle protein accretion is key for the efficient production of poultry meat, whose demand is steadily increasing. In a context where antimicrobial growth promoters use is being restricted, it is important to find alternatives as well as to characterize the effect of immunological stress on broiler chicken growth. Despite of its importance, research on broiler chicken muscle protein dynamics has been mostly limited to the study of mixed protein turnover. The present study aims to characterize the effect of a bacterial challenge and the feed supplementation of a citrus and a cucumber extract on broiler chicken individual breast muscle proteins fractional synthesis rates (FSR) using a recently developed dynamic proteomics pipeline. 21 day-old broiler chickens were administered a single 2H2O dose before being culled at different timepoints. A total of 60 breast muscle protein extracts from five experimental groups (Unchallenged, Challenged, Control Diet, Diet 1 and Diet 2) were analyzed using a DDA proteomics approach. Proteomics data was filtered in order to reliably calculate multiple proteins FSR making use of a newly developed bioinformatics pipeline. Broiler breast muscle proteins FSR uniformly decreased following a bacterial challenge, this change was judged significant for 15 individual proteins, the two major functional clusters identified as well as for mixed breast muscle protein. Citrus or cucumber extract feed supplementation did not show any effect on the breast muscle protein FSR of immunologically challenged broilers. The present study has identified potential predictive markers of breast muscle growth and provided new information on broiler chicken breast muscle protein turnover which could be essential for improving the efficiency of broiler chicken meat production.
Project description:Effect of biochar on cecal microbiota of broiler chickens
| PRJEB38278 | ENA
Project description:Effect of dietary supplementation of solubles from shredded, steam-exploded pine particles modulates cecal microbiome composition in broiler chickens
| PRJNA1073068 | ENA
Project description:Sequencing of cecal contents in broiler chickens
Project description:Campylobacter jejuni (C. jejuni) is a zoonotic pathogen that causes human diarrhea worldwide. Chickens are a natural reservoir of C. jejuni. Understanding the host response to C. jejuni infection at the molecular level will lay the foundation to control human campylobacterosis by reducing food contamination. Two distinct genetic lines, resistant (line A) and susceptible (line B) to C. jejuni colonization, were utilized to profile the host response to C. jejuni infection using an Agilent chicken 44K microarray. Day-old chickens were challenged orally with C. jejuni and spleens collected for total RNA 7 days post-challenge. Twenty infected samples with highest (a) or lowest bacterial number (b) in cecal content and twenty non-infected (c) in each line were randomly pooled into four biological replicates. The pair comparisons among these three groups within each line were analyzed. The signal intensity of each gene was normalized using LOWESS method. A mixed model was used to identify differentially expressed genes by SAS (P < 0.001). This was opposite to previous cecal tonsil microarray result. There were 468, 743, and 939 genes differentially expressed between groups a and c, groups a and b, and groups b and c in line A, respectively, and 201, 37, 126 genes in line B, respectively. More differentially expressed genes in spleen in line A than in line B were found. The results indicated that significantly different response to C. jejuni infection occurred between resistant and susceptible chicken lines, and the effects of interaction between genetics and tissue should be considered. Chickens in two broiler lines were inoculated with 10^5 cfu C. jejuni on one day after hatch. The cecal content and cecal tonsil was collected and bacterial number in cecal content was counted on day 7 after inoculation. Twenty samples were separated into 3 groups (high burden, low burden, and control) based on bacterial burden of cecal content in each line, 5 samples were mixed randomly into one pool. A dual color, balanced design was carried on for all samples. Three comparisons were used in each line, non-infected/susceptible, susceptible/resistant, resistant/non-infected, totally, four biological replicates in each line. A Dye swap was used in each pair of comparisons including AN/AS, AS/AR, AR/AN; BN/BS, BS/BR, and BR/BN. Background subtracted signal intensity were collected from 24 arrays and normalized for data analysis.
Project description:Humans and animals encounter a summation of exposures during their lifetime (the exposome). In recent years, the scope of the exposome has begun to include microplastics. Microplastics (MPs) have increasingly been found in locations where there could be an interaction with Salmonella enterica Typhimurium, one of the commonly isolated serovars from processed chicken. In this study, the microbiota response to a 24-hour co-exposure to Salmonella enterica Typhimurium and/or low-density polyethylene (PE) microplastics in an in vitro broiler cecal model was determined using 16S rRNA amplicon sequencing (Illumina) and untargeted metabolomics. Community sequencing results indicated that PE fiber with and without S. Typhimurium yielded a lower Firmicutes/Bacteroides ratio compared to other treatment groups, which is associated with poor gut health, and overall had greater changes to the cecal microbial community composition. However, changes in the total metabolome were primarily driven by the presence of S. Typhimurium. Additionally, the co-exposure to PE Fiber and S. Typhimurium caused greater cecal microbial community and metabolome changes than either exposure alone. Our results indicate that polymer shape is an important factor in effects resulting from exposure. It also demonstrates that microplastic-pathogen interactions cause metabolic alterations to the chicken cecal microbiome in an in vitro chicken cecal model.
Project description:Gene expression profiling of male broiler chickens exposed to APEC O1. Comparisons were made between Day 1 and Day 5 of all treatment groups, between differences in pathology and effect of vaccine on spleen gene expression. The goal was to determine expression differences that could convey genetic resistance to APEC O1.