Project description:Higher aridity and more extreme rainfall events in drylands are predicted under climate change. Yet it is unclear how changing precipitation regimes may affect nitrogen (N) cycling, especially in areas with extremely high aridity. Here we investigated soil N isotopic values (M-NM-415N) along a 3200 km aridity gradient and show a hump-shaped relationship between soil M-NM-415N and aridity index (AI) with a threshold at AI=0.32. Also, using a micro-array metageomics tool named GeoChip 5.0, we showed that Variations of nitrification and denitrification gene abundance along the gradient which provide further evidence for the existence of this threshold. Data support the hypothesis that the increase of gaseous N losses is higher than the increase of net plant N accumulation with increasing AI below AI=0.32, while the opposite is favoured above this threshold. Our results suggest the importance of N-cycling microbes in extremely dry areas and the different controlling factors of N cycling on the either side of the threshold.
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes. 300 samples were collected from 30 sites along the latitudinal gradient, with 10 replicates in every site
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes.
2015-05-23 | GSE69171 | GEO
Project description:Soil microbial communities along a topographic gradient
| PRJNA678372 | ENA
Project description:Soil bacterial communities along temperate grassland gradient
| PRJNA1066703 | ENA
Project description:Soil microbial communities across a Texas rainfall gradient in summer 2015