Project description:Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system. Following transition to more committed states, ESCs reduce digestion of extracellular protein and instead become reliant on exogenous amino acids. Accordingly, amino acid withdrawal selects for ESCs that mimic the preimplantation epiblast. More broadly, we find that all lineages of preimplantation blastocysts exhibit constitutive macropinocytic protein uptake and digestion. Taken together, these results highlight exogenous protein uptake and digestion as an intrinsic feature of preimplantation development and provide insight into the catabolic strategies that enable embryos to sustain viability before implantation.
Project description:Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system. Following transition to more committed states, ESCs reduce digestion of extracellular protein and instead become reliant on exogenous amino acids. Accordingly, amino acid withdrawal selects for ESCs that mimic the preimplantation epiblast. More broadly, we find that all lineages of preimplantation blastocysts exhibit constitutive macropinocytic protein uptake and digestion. Taken together, these results highlight exogenous protein uptake and digestion as an intrinsic feature of preimplantation development and provide insight into the catabolic strategies that enable embryos to sustain viability before implantation.
Project description:Opioid use disorder (OUD) is a public health crisis currently being exacerbated by increases in use of fentanyl; therefore, the identification of novel biomarkers and treatment strategies is critical. Here, we define how manipulations of the gut microbiome drive fentanyl intake, fentanyl seeking, and alter proteomic plasticity in the nucleus accumbens. These findings establish clear relevance for gut-brain signaling in OUD, and lay foundations for further translational work in this space.
Project description:Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable. To define such factors further, we performed a large-scale gene profiling experiment which plotted global expression changes in the rat dorsal root ganglion in three peripheral neuropathic pain models. This resulted in the discovery that the potassium channel alpha subunit KCNS1, involved in neuronal excitability, is constitutively expressed in sensory neurons and markedly downregulated following nerve injury. KCNS1 was then characterized by an unbiased network analysis as a putative pain gene, a result confirmed by single nucleotide polymorphism association studies in humans. A common amino acid changing allele, the 'valine risk allele', was significantly associated with higher pain scores in five of six independent patient cohorts assayed (total of 1359 subjects). Risk allele prevalence is high, with 18-22% of the population homozygous, and an additional 50% heterozygous. At lower levels of nerve damage (lumbar back pain with disc herniation) association with greater pain outcome in homozygote patients is P = 0.003, increasing to P = 0.0001 for higher levels of nerve injury (limb amputation). The combined P-value for pain association in all six cohorts tested is 1.14 E-08. The risk profile of this marker is additive: two copies confer the most, one intermediate and none the least risk. Relative degrees of enhanced risk vary between cohorts, but for patients with lumbar back pain, they range between 2- and 3-fold. Although work still remains to define the potential role of this protein in the pathogenic process, here we present the KCNS1 allele rs734784 as one of the first prognostic indicators of chronic pain risk. Screening for this allele could help define those individuals prone to a transition to persistent pain, and thus requiring therapeutic strategies or lifestyle changes that minimize nerve injury. Microarrays were run on mRNA extracted from adult rat L4 and L5 DRGs cells after 3,7,21,40 hours after three different sciatic nerve lesions [Spared Nerve Injury (SNI); Chronic Constriction Injury (CCI); Spinal Nerve Ligation (Ch) with Sham controls (SH)].
Project description:Unique transcriptomes define naïve, primed and paused embryonic pluripotent states. Here we perform calibrated transient transcription sequencing (TT-seq) to de novo define and quantify coding and non-coding transcription units (TUs) in different pluripotent states. We observe a global reduction of RNA synthesis, total RNA amount and turnover rates in ground state (2i) and paused pluripotency (mTORi). We demonstrate that elongation speed can be reliably estimated from TT-seq nascent RNA and RNA Polymerase II occupancy levels, and observe a transcriptome-wide attenuation of elongation speeds in these two inhibitor-induced states. Comparing closely related transcriptional states with different elongation speeds, we also discover a relationship between elongation speed and termination read-through distance. Our analysis suggests that steady-state transcriptomes in mouse ESC cells are controlled predominantly on the level of RNA synthesis and signaling pathways governing different pluripotent states directly control key parameters of transcription.