Project description:The goal of this study is to profile NFIA DNA-binding properties in the adult mouse brain. We performed chromatin immunoprecipitation of NFIA in the hippocampus and olfactory bulb of wildtype mice, and samples were subjected to sequencing. We find that NFIA preferentially binds DNA in the hippocampus but not in the olfactory bulb as evidenced by the distinct lack of NFIA binding peaks in the olfactory bulb. Mass spectrometry results suggested that NFIA has a significantly higher binding affinity for NFIB in the olfactory bulb, potentially blocking NFIA’s ability to bind DNA. Virally induced siRNAs against NFIB or scramble were injected into the olfactory bulb of adult wildtype mice to knock down NFIB. We performed chromatin immunoprecipitation of NFIA in the olfactory bulb injected with siRNA-NFIB or siRNA-scramble. Subsequent sequencing revealed an increase of NFIA binding in the olfactory bulb upon the depletion of NFIB as compared to the siRNA-scramble and wildtype controls.
Project description:The phenotypically characterized hTERT immortalized porcine olfactory bulb neuroblast cell line (OBGF400) was subjected to an extensive whole genome-scaled expression profile for establishing their use as an in vitro neuronal disease model system. Microarrays were used to provide a comprehensive knowledge underlying the genomic complexity and overall gene expression capacity of the immortalized OBGF400 cells. The analysis revealed the elaborate signaling mechanisms of this unique subpopulation of porcine neuronally committed progenitors that mirrors the intricate organization of postnatal neurongenic zones. SUBMITTER_CITATION: Transcriptome Profile and Cytogenetic Analysis of Immortalized Neuronally Restricted Progenitor Cells Derived from the Porcine Olfactory Bulb. Animal biotechnology 2009 vol:20 iss:4 page:186-215 Experiment Overall Design: Total cellular RNA extracts from independent OBGF400 (neuroblasts) and PK15 (non-neuronal, epithelial origin) cell cultures (9 each) were pooled into a total of 3 biological replicates per cell line. The concentrations and purity of the pooled RNA preparations were determined using the BioAgilent RNA assay prior to hybridization on Affymetrix GeneChip® Porcine Genome Expression Arrays. To ascertain the genes that were preferentially expressed by the OBGF400 neuroblasts, we used the PK15 cellular array in an effort to exclude somatic cell background.
Project description:Nasal mucosa and olfactory bulb are separated by the cribriform plate which is perforated by olfactory nerves. We have previously demonstrated that the cribriform plate is permissive for T cells and monocytes and that viruses can enter the bulb upon intranasal injection by axonal transportation. Therefore, we hypothesized that nasal mucosa and olfactory bulb are equipped to deal with constant infectious threats. To detect genes involved in this process, we compared gene expression in nasal mucosa and bulb of mice kept under specific pathogen free (SPF) conditions to gene expression of mice kept on non-SPF conditions using RNA deep sequencing. We found massive alterations in the expression of immune-related genes of the nasal mucosa, while the bulb did not respond immunologically. The absence of induction of immune-related genes in the olfactory bulb suggests effective defence mechanisms hindering entrance of environmental pathogens beyond the outer arachnoid layer. The genes detected in this study may include candidates conferring susceptibility to meningitis.
Project description:The effects of chronic olfactory inflammation on the olfactory bulb (OB) were examined. Inflammation was induced in the olfactory epithelium by repeated unilateral intranasal administration of lipopolysaccharide (LPS). After 4 weeks, gene expression profiles were compared between ipislateral and contralateral OBs using RNA sequencing analysis.
Project description:The phenotypically characterized hTERT immortalized porcine olfactory bulb neuroblast cell line (OBGF400) was subjected to an extensive whole genome-scaled expression profile for establishing their use as an in vitro neuronal disease model system. Microarrays were used to provide a comprehensive knowledge underlying the genomic complexity and overall gene expression capacity of the immortalized OBGF400 cells. The analysis revealed the elaborate signaling mechanisms of this unique subpopulation of porcine neuronally committed progenitors that mirrors the intricate organization of postnatal neurongenic zones.
Project description:The aim of this study was to use global gene expression profiling to define intrinsic molecular differences that distinguish olfactory ensheathing cells from mucosa (OM-OECs) from olfactory ensheathing cells from olfactory bulb (OB-OECs). 10,000 OECs from olfactory mucosa (OM) or olfactory bulb (OB) were isolated from 4 rats.
Project description:Purpose: The goal of this study is to investigate the effects of fine particulate matter (PM2.5) exposure on mouse olfactory bulb using next generation sequencing (NGS). Methods: After 28 days of 3 mg/kg/3 day and 10 mg/kg/3 day PM2.5 exposure, olfactory bulb mRNA profiles of 8-week-old wild-type (WT) male C57BL/6 mice were generated by deep sequencing, in 3-4 repeats, using Illumina NovaSeq 6000. For each sample, clean reads were obtained that mapped to mm10 using HISAT2 (hierarchical indexing for spliced alignment of transcripts) v2.0.477. Results: Our study revealed that PM2.5 treatment caused significant effects on the gene expression profilling of mouse olfactory bulb. Overall, the sequencing identified 34,745 transcripts, and two kinds of treatments obtained 60 and 138 differently expressed genes (DEGs) respectively, with a criteria of fold change >2 and q-value <0.5. Most biological events that DEGs involved were inflammation relevant. Conclusions: Our study revealed that PM2.5 treatment caused significant effects on the gene expression profiling of mouse olfactory bulb.
Project description:To investigate the repertoire of olfactory receptors when the olfactory bulb is 30- 10% of normal size. Olfactory bulb was degenerated due conditional transgenic expression of the VEGF blocker sFlt1 in the brain at embryonic day 13.5
Project description:Using the highly sensitive miRNA array, we screened 40 microRNAs abundant in the olfactory bulb and we explored the functions of these miRNAs in the olfactory bulb by Gene Ontology and Kyoto Encyclopedia of Genes annotation. The enrichment results indicated that these miRNAs mainly participated in the axon guidance process. Furthermore, the quantitative real-time polymerase chain reaction, immunohistochemistry, and dual luciferase reporter assay results showed that miR-30c is a specific regulator of semaphorin-3A, which will give new insights in disclosing the mechanism of functional maintenance and sexual-specific differentiation of the olfactory bulb.
Project description:Using the highly sensitive miRNA array, we screened 40 microRNAs abundant in the olfactory bulb and we explored the functions of these miRNAs in the olfactory bulb by Gene Ontology and Kyoto Encyclopedia of Genes annotation. The enrichment results indicated that these miRNAs mainly participated in the axon guidance process. Furthermore, the quantitative real-time polymerase chain reaction, immunohistochemistry and dual luciferase reporter assay results showed that miR-30c is a specific regulator of semaphorin-3A, which will give new insights in disclosing the mechanism of functional maintenance and sexual-specific differentiation of the olfactory bulb.