Project description:BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility. In this study, we optimized the BAC araay-CGH protocol for automated hybridization for FFPE breast cancer samples. We have tested hybridization temperature and duration, different hybridization buffer conditions, and post-hybridization washing.
Project description:BACKGROUND: Array Comparative Genomic Hybridization (aCGH) is a rapidly evolving technology that still lacks complete standardization. Yet, it is of great importance to obtain robust and reproducible data to enable meaningful multiple hybridization comparisons. Special difficulties arise when aCGH is performed on archival formalin-fixed, paraffin-embedded (FFPE) tissue due to its variable DNA quality. Recently, we have developed an effective DNA quality test that predicts suitability of archival samples for BAC aCGH. METHODS: In this report, we first used DNA from a cancer cell-line (SKBR3) to optimize the aCGH protocol for automated hybridization, and subsequently optimized and validated the procedure for FFPE breast cancer samples. We aimed for highest throughput, accuracy, and reproducibility applicable to FFPE samples, which can also be important in future diagnostic use. RESULTS: Our protocol of automated array-CGH on archival FFPE ULS-labeled DNA showed very similar results compared with published data and our previous manual hybridization method. CONCLUSION: This report combines automated aCGH on unamplified archival FFPE DNA using non-enzymatic ULS labeling, and describes an optimized protocol for this combination resulting in improved quality and reproducibility.
Project description:Distinguishing between Spitz nevus and melanoma presents a challenging task for clinicians and pathologists. Most of these lesions are submitted entirely in formalin for histologic analysis by conventional hematoxylin and eosin-stained sections, and fresh-frozen material for ancillary studies is rarely collected. Molecular techniques, such as comparative genomic hybridization (CGH), can detect chromosomal alterations in tumor DNA that differ between these 2 lesions. This study investigated the ability of high-resolution array-based CGH to serve as a diagnostic test in distinguishing Spitz nevus and melanoma using DNA isolated from formalin-fixed and paraffin-embedded samples. Two of 3 Spitz nevi exhibited no significant chromosomal alterations, while the third showed gain of the short arm of chromosome 11p. The latter finding has previously been described as characteristic of a subset of Spitz nevi. The 2 melanomas showed multiple copy number alterations characteristic of melanoma such as 1q amplification and chromosome 9 deletion. This study has shown the utility of array-based CGH as a potential molecular test in distinguishing Spitz nevus from melanoma. The assay is capable of using archival paraffin-embedded, formalin-fixed material; is technically easier to perform as compared with conventional CGH; is more sensitive than conventional CGH in being able to detect focal alterations; and can detect copy number alterations even with relatively small amounts of lesional tissue as is typical of many skin tumors. Series_type = clinical_history_design A clinical history design type is where the organisms clinical history of diagnosis, treatments, e.g. vaccinations, surgery etc. Keywords: other
Project description:Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumor material. Validation of patterns identified by whole-genome bisulphite sequencing in a larger cohort. DNA methylation profiles of 276 primary medulloblastoma and 8 normal cerebellum control samples were generated from fresh-frozen and formalin-fixed paraffin-embedded material using the Illumina 450k methylation array.
Project description:Tissue sample acquisition is a limiting step in many studies. There are many thousands of formalin fixed paraffin embedded archival blocks collected around the world, but in contrast relatively few fresh frozen samples in tumor banks. Once samples are fixed in formalin the RNA is degraded and traditional methods for gene expression profiling are not suitable. In this study we have evaluated the whole genome DASL assay from Illumina to perform transcriptomic analysis from archived breast tumor tissue fixed in formalin paraffin embedded blocks. We profiled 76 familial breast tumors from cases carrying a BRCA1, BRCA2 or ATM mutation, or from non-BRCA1/2 families. We found that replicate samples correlated well with each other (r2=0.9-0.98). In 12/15 cases, the matched formalin-fixed and frozen samples predicted the same tumor molecular subtypes with confidence. These results demonstrate that the whole genome DASL assay is a valuable tool to profile degraded RNA from archival FFPE material. This assay will enable transcriptomic analysis of a large number of archival samples that are stored in pathology archives around the globe and consequently will have the potential to improve our understanding and characterisation of many diseases.
Project description:This SuperSeries is composed of the following subset Series: GSE23384: Gene profiling using archival formalin-fixed paraffin-embedded breast cancer specimens can generate informative microarray data: A comparison with matched fresh fine needle aspiration biopsy samples (FFPE samples) GSE23385: Gene profiling using archival formalin-fixed paraffin-embedded breast cancer specimens can generate informative microarray data: A comparison with matched fresh fine needle aspiration biopsy samples (FNA samples) Refer to individual Series
Project description:Tissue sample acquisition is a limiting step in many studies. There are many thousands of formalin fixed paraffin embedded archival blocks collected around the world, but in contrast relatively few fresh frozen samples in tumor banks. Once samples are fixed in formalin the RNA is degraded and traditional methods for gene expression profiling are not suitable. In this study we have evaluated the whole genome DASL assay from Illumina to perform transcriptomic analysis from archived breast tumor tissue fixed in formalin paraffin embedded blocks. We profiled 76 familial breast tumors from cases carrying a BRCA1, BRCA2 or ATM mutation, or from non-BRCA1/2 families. We found that replicate samples correlated well with each other (r2=0.9-0.98). In 12/15 cases, the matched formalin-fixed and frozen samples predicted the same tumor molecular subtypes with confidence. These results demonstrate that the whole genome DASL assay is a valuable tool to profile degraded RNA from archival FFPE material. This assay will enable transcriptomic analysis of a large number of archival samples that are stored in pathology archives around the globe and consequently will have the potential to improve our understanding and characterisation of many diseases. RNA was extracted from FFPE Familial breast tumours and analysed using the WG-DASL assay for Illumina.
Project description:Analysis of gene expression changes in tumour epithelium (DCIS and invasive breast cancer) and stroma both immediately surrounding the lesions and more distantly. Total RNA obtained from Formalin Fixed Paraffin Embedded archival material and the individual compartments (stroma and epithelium) compared independently across the samples. Sample abbreviation key: BC = breast cancer DCIS = ductal carcinoma in situ IDC = invasive ductal carcinoma RM = remote metastasis S = stroma NS = near stroma.
Project description:We have carried out microarray-based comparative genomic hybridisation (arrayCGH) on 50 perilobar nephrogenic rest and 25 matching Wilms tumours in order to identify changes in DNA copy number associated with IGF-driven Wilms tumorigenesis. All patient samples were formalin fixed-paraffin embedded archival material. Tumour DNA was co-hybridised with normal female genomic DNA onto 5.8K, 0.9Mb-spaced (E-MEXP-213) and/or a 16K, 100kb-spaced BAC array. Data was normalised and quality-filtered, an adapted weights smoothing algorithm fitted, and changes in DNA copy number assessed for each clone.