Project description:CURLY LEAF (CLF), the major histone methyltransferase of Polycomb Repressive Complex 2 (PRC2), modifies trimethylation of histone H3 lysine 27 (H3K27me3) and mediates dynamical chromatin repression in Arabidopsis. Here we profiled Arabidopsis transcriptomes obtained from roots, leaves, flowers and siliques of Col-0 and clf-28 plants using RNA-seq. Our analysis uncovered 3835 transcription units were up-regulated in clf-28. Compared with H3K27me3 ChIP-CHIP data, we found at least 42% of them were associated with H3K27me3.
Project description:CURLY LEAF (CLF), the major histone methyltransferase of Polycomb Repressive Complex 2 (PRC2), modifies trimethylation of histone H3 lysine 27 (H3K27me3) and mediates dynamical chromatin repression in Arabidopsis. Here we used strand specific RNA-sequencing to profile Arabidopsis transcriptomes obtained from roots, shoots, flowers and siliques of Col-0 and clf-28 plants. Our analysis identified a large number of CLF-regulatedd transcripts in Arabidopsis.
Project description:CURLY LEAF (CLF), the major histone methyltransferase of Polycomb Repressive Complex 2 (PRC2), modifies trimethylation of histone H3 lysine 27 (H3K27me3) and mediates dynamical chromatin repression in Arabidopsis. Here we used strand specific RNA-sequencing to profile Arabidopsis transcriptomes obtained from roots, shoots, flowers and siliques of Col-0 and clf-28 plants. Our analysis identified a large number of CLF-regulatedd transcripts in Arabidopsis. Transcriptome profiling in roots, shoots, inflorescences and siliques of WT and clf-28 plants with 3 biological replicates.
Project description:CURLY LEAF (CLF), the major histone methyltransferase of Polycomb Repressive Complex 2 (PRC2), modifies trimethylation of histone H3 lysine 27 (H3K27me3) and mediates dynamical chromatin repression in Arabidopsis. Here we profiled Arabidopsis transcriptomes obtained from roots, leaves, flowers and siliques of Col-0 (As described under GEO ID: GSE38612) and clf-28 plants using RNA-seq. Our analysis uncovered 3835 transcription units were up-regulated in clf-28. Compared with ChIP-CHIP data, we found at least 42% of them were associated with H3K27me3. Transcriptom profiling in roots, leaves, flowers and siliques of clf-28 plants.
Project description:To explore the bivalent histone modifications in the Arabidopsis genome, we examined genome-wide histone 3 lysine-27 trimethylation (H3K27me3) and histone 3 lysine-4 trimethylation (H3K4me3) in 5-day-old seedlings (Col-0) by ChIP-seq. We found that more than 1300 genes loci contain both H3K27me3 and H3K4me3.
Project description:To explore the bivalent histone modifications in the Arabidopsis genome, we examined genome-wide histone 3 lysine-27 trimethylation (H3K27me3) and histone 3 lysine-4 trimethylation (H3K4me3) in 5-day-old seedlings (Col-0) by ChIP-seq. We found that more than 1300 genes loci contain both H3K27me3 and H3K4me3.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone H3 trimethylation in rice endosperm. By obtaining about four hundred million bases of sequence from rice chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of rice endosperm. We find that the presence of H3K27me3 in either upstream or downstream of a gene is predominately associated with repression of the gene, while its absence is mainly associated with high gene expression. Examination of Histone H3 lysine 27 trimethylation in rice endosperm.
Project description:We investigated the genomic landscape of histone modifications in antigen-experienced CD8+ T cells. Using a ChIP-Seq approach coupled with global gene expression profiling [GSE67825], we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in distinct subsets of CD8+ T cells - naïve, stem cell memory, central memory, and effector memory. To gain insight into how histone architecture is remodeled during the differentiation of activated T cells
Project description:BRAHMA (BRM) is a conserved SWI/SNF-type chromatin remodeling ATPase implicated in many key nuclear events. Histone H3 Lysine 27 (H3K27) demethylases specifically remove the repressive histone mark, trimethylation of H3K27 (H3K27me3). Both proteins are thought to play active roles in regulating gene activities at the chromatin level, but their genome-wide coordination remains to be determined. In Arabidopsis thaliana, RELATIVE OF EARLY FLOWERING 6 (REF6, also known as JMJ12) is the first identified plant H3K27 demethylase. Here, genome-wide analyses revealed that REF6 targets to thousands of genes across the Arabidopsis genome and co-localizes with BRM at more than 1,000 genes, many of which are genes involved in response to various stimuli, especially plant hormones. Loss of REF6 activity results in decreased BRM occupancy at hundreds of BRM-REF6 co-targets, indicating that REF6 is required for the recruitment of BRM to chromatin. Further, REF6 targets to genomic loci that contains the CTCTGTTT motif in vivo