Project description:Background. Food can affect the microbial balance in the human intestine, and the ingestion of probiotics may play a role in the current obesity pandemic. The objective of our study was to determine if increased Lactobacillus spp. in the intestinal microflora of mice can promote growth and if changes in the intestinal microflora are associated with modifications in metabolism. Methodology. Female BALBc mice were divided between one control and two experimental groups and inoculated either once or twice with 4×1010 Lactobacillus per animal in PBS or with PBS alone. Fecal samples were collected and tested using qPCR to detect and quantify Lactobacillus spp., Bacteroidetes and Firmicutes. Gene expression by microarray and RT-PCR was studied in liver and adipose tissue. Finally, metabolic parameters in the plasma were tested. Principal Findings. In three independent experiments, we observed an increase in both weight gain and liver weight in mice inoculated with 4×1010 Lactobacillus. Inoculation with Lactobacillus sp. (ostrich) increased the Lactobacillus spp. and Firmicutes DNA copy number in feces. The transcriptional profile of liver tissue from mice inoculated with Lactobacillus sp. (ostrich) was enriched for Gene Ontology terms related to the immune response and metabolic modifications. The mRNA levels of fatty acyl synthase (Fas), sterol regulatory element binding factor 1 (Srebp1c), tumor necrosis factor alpha (Tnf), cytochrome P450 2E1 (Cyp2e1) and 3-phosphoinositide-dependent protein kinase-1 (Pdpk1) were significantly elevated in liver tissue in experimental group animals. In gonadal adipose tissue, the expression of leptin, peroxisome proliferator-activated receptor gamma (Pparg and Srebp1c was significantly higher in experimental group animals, whereas the expression of adiponectin was significantly lower. Conclusions. Alterations in the intestinal microbiota resulted in increased weight gain. Furthermore, increased Lactobacillus spp. in the intestinal microflora of mice inoculated with Lactobacillus sp. (ostrich) resulted in accelerated weight gain, liver enlargement and metabolic changes in the plasma, liver and adipose tissue.
Project description:Emerging evidences have shown that gut microbiota have played roles in the modulation of chemotherapy agents for cancer patients receiving chemotherapy. Probiotics are gut microbiota beneficial to human body. However, little was known about the role of probiotics for cancer patients receiving chemotherapy. Lactobacillus rhamnosus TCELL-1 is a kind of probiotics which were isolated from the gut mucosa of healthy Taiwanese. The aim of the study was to evaluate the effect of Lactobacillus rhamnosus TCELL-1 upon staged III colorectal cancer patients receiving adjuvant chemotherapy.
Project description:Bacterial membrane vesicles have been implicated in a broad range of functions in microbial communities from pathogenesis to gene transfer. Though first thought to be a phenomenon associated with Gram-negative bacteria, vesicle production in Staphylococcus aureus, Lactobacillus plantarum, and other Gram-positives has recently been described. Here we characterize MVs from three different Lactobacillus species (L. acidophilus, L. casei, and L. reuteri), determining that the size and protein composition of Lactobacillus-derived MVs have both similarities and differences with those produced by Gram-negative bacteria. Using proteomics, we identified more than 80 protein components from Lactobacillus-derived MVs, including some that were enriched in the vesicles themselves. For each species, vesicular proteins were categorized based on biological pathway and examined for subcellular localization signals in an effort to identify possible sorting mechanisms for MV proteins. Additionally, differences between MVs of other Lactobacillus species and Gram positive bacteria were highlighted. Information in this study will assist in elucidation of the formation and functions of MVs, as well as the development of therapeutic tools for vaccines, diagnosis, and therapeutic delivery.
Project description:Obesity and overweight are closely related to diet, and gut microbiota play an important role in body weight and human health. The aim of this study was to explore how Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 supplementation alleviate obesity by modulating the human gut microbiome. A randomized, double-blind, placebo-controlled study was conducted on 72 overweight individuals. Over a 12-week period, probiotic groups consumed 5×10^9 colony-forming units of HY7601 and KY1032), whereas the placebo group consumed the same product without probiotics. After treatment, the probiotic group displayed a reduction in body weight (p <0.001), visceral fat mass (p <0.025), and waist circumference (p <0.007), and an increase in adiponectin (p <0.046), compared with the placebo group. Additionally, HY7601 and KY1032 supplementation modulated bacterial gut microbiota characteristics and beta diversity by increasing Bifidobacteriaceae and Akkermansiaceae, and decreasing Prevotellaceae and Selenomonadaceae. In summary, HY7601 and KY1032 probiotics exert anti-obesity effects by regulating the gut microbiota; hence, they have therapeutic potential for preventing or alleviating obesity and overweight.