Project description:To investigate effects of Adjudin on gene expression of islets from db/db mouse, islets from 12 to 13 weeks old male db/db mice were isolated, cultured in incubator for overnight recovery, and treated with either DMSO or 10 µM Adjudin for 1 day before RNA sequencing.
Project description:To investigate the effects of imeglimin and metformin on islet cells in db/db mice, we isolated pancreatic islets from db/db mice treated with/without imeglimin and metformin or db/+ mice.
Project description:This program addresses the molecular basis of beta-cell failure associated with the development of type 2 diabetes in the db/db mice. Specifically, which genes are differentially expressed in pancreatic islets of the db/db mice compared to the control db/+ mice? The db/db mice islets profiling data was analyzed by identifying genes that were up- and down-regulated at selected p value and fold change in the islets of db/db mice compared to the corresponding db/+ controls.
Project description:This program addresses the molecular basis of beta-cell failure associated with the development of type 2 diabetes in the db/db mice. Specifically, which genes are differentially expressed in pancreatic islets of the db/db mice compared to the control db/+ mice?
Project description:In this study, we discovered cytosolic and mitochondrial fragments resulting from tRNA and mt-tRNA cleavage, which may act as new regulators of cellular and metabolic functions. We analyzed hundreds of these fragments in the pancreatic islets of db/db mice and compared them to heterozygous control db/+ mice. At 16 weeks of age, db/db mice exhibit obesity, insulin resistance, and glucose intolerance. In our analysis, we identified 3858 tRFs in the islets of db/db mice, among which 342 exhibited significant changes (≥ 2 fold; adjusted p value ≤ 0.05) compared to controls. Of these, 199 tRFs showed increased levels, while 170 tRFs showed decreased levels in the pre-diabetic mice. Notably, a striking majority (147 out of 170) of the tRFs with reduced abundance in the islets of db/db mice were derived from the cleavage of tRNAs encoded by the mitochondrial genome. Our findings reveal a significant reshaping of mitochondrial tRFs in pre-diabetic conditions, coinciding with a well-established mitochondrial metabolic defect under these conditions. Specifically, we demonstrated that a fragment (named mt-tRF-LeuTAA) resulting from the cleavage of mt-tRNA-LeuTAA, encoded by the mitochondrial genome and found to be reduced in the islets of db/db mice, acts as a key regulator of mitochondrial OXPHOS functions, mitochondrial membrane potential, the insulin secretory capacity of ß-cells, and the insulin sensitivity of myotube muscle cells.
Project description:Purpose: RNA seq analysis were to compare and contrast the gene expression profile involved in the dedifferentiation of db/db islets in type 2 diabetes Methods: Islets of wild type, db/+ and db/db were purified using perfusion from 12 week old mice and RNA were isolated. Islated RNA were used in RNA seq to understand the expression pattern Results: Using an optimized data analysis workflow, we mapped about 10 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts WT, db/+ and db/db mice islets with TopHat workflow. Hierarchical clustering of differentially expressed genes uncovered there role in type 2 diabetes. Data analysis with TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions: We characterised and identified genes involved in dedifferentiation of islets.
Project description:Investigation of gene expression level changes in pancreatic and liver tissues of diabetic db/db mice supplemented with selenate, compared to the diabetic db/db mice administered placebo. Fasting blood glucose levels increased continuously in diabetic db/db mice administered placebo (DMCtrl) but decreased gradually in selenate-supplemented diabetic db/db mice (DMSe) and approached normal values when the experiment ended. The size of pancreatic islets increased, causing the plasma insulin concentration to double in DMSe mice compared with that in DMCtrl mice. Two six chip studies using total RNA respectively isolated from pancreatic and liver tissues of three selenate-supplemented diabetic db/db mice, and three diabetic db/db mice administered placebo.