Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Despite the characterization of many aetiologic genetic changes. The specific causative factors in the development of sporadic colorectal cancer remain unclear. This study was performed to detect the possible role of Enteropathogenic Escherichia coli (EPEC) in developing colorectal carcinoma.
Project description:We performed a high-throughput mapping of the 5’ end transcriptome of the pAA plasmid of the clinical Escherichia coli O104:H4 (E. coli O104:H4) isolate LB226692. We employed differential RNA-sequencing (dRNA-seq), a terminator exonuclease (TEX)-based RNA-seq approach allowing for the discrimination of primary and processed transcripts. This method has proven to be a powerful tool for the mapping of transcription start sites (TSS) and detection of non-coding RNAs (ncRNAs) in bacteria. We catalogued pAA-associated TSS and processing sites on a plasmid-wide scale and performed a detailed analysis of the primary transcriptome focusing on pAA virulence gene expression.
Project description:To characterize the differentially expressed genes between pathogenic avian E. coli and human E. coli ATCC 25922, Abstract Escherichia coli (E. coli) is a harmless common bacterium of poultry intestine, but with a wide range of genomic flexibility, is also causative agent of many poultry diseases collectively called colibacillosis that is blamed for high economic loss in poultry sector worldwide. Numerous studies have been conducted to check the prevalence of pathogenic E. coli in poultry and poultry products, however limited data are available regarding their resistance and virulence associated genes expression profile. This study examined the pathogenomic content of poultry E. coli by antibiotic susceptibility, biofilm formation and adhesion, invasion and intracellular survivability assays in Caco-2 and Raw 264.7 cell lines along with the determination of median lethal dose in two-day old chickens. A clinical pathogenic multidrug resistant (MDR) isolate, E. coli 381, isolated from broilers was found to be highly virulent in cell culture and in chicken model. Transcriptome analysis has been skewed towards bacterial pathogens because of the prioritization of poultry diseases. Comparative gene expression profile of MDR E. coli 381 and the reference human strain E. coli ATCC 25922 was done using Illumina HiSeq2500 transcriptome and results were verified by RT-qPCR analyses. A number of resistant encoding genes including multidrug transporters, multidrug resistance proteins, porins and autotransporters were identified. We also noticed overexpression of very important virulent genes (fimA, fimC, fimH and fimI) encoding the type-1 fimbrial proteins, curli fimbriae genes , invasin genes, toxin-encoding genes and biofilm forming regulatory genes . In addition, many types of stress and metal homeostasis controlling genes were among up-regulated genes in E. coli 381 as compared to reference strain. GO and KEGG pathway analysis results revealed that genes controlling secondary metabolism, drug transport, adhesion and invasion proteins, and mobile genetic elements were over-expressed in E. coli 381. Several genes involved in cellular and metabolic processes such as carbohydrate metabolism were responsible for stress tolerance. Seminal description of the transcriptomic results and other unique features of E. coli 381 confirmed that it is highly virulent and MDR strain of poultry origin. This comparative study provides new avenues for further work on molecular mechanisms to prevent resistance development in bacteria and to ensure public health.
Project description:we designed a CRISPR-based chromosome-doubling technique to construct an artificial diploid Escherichia coli cell. The stable diploid E. coli was confirmed by quantitative PCR and third-generation genome sequencing.
Project description:Purpose: In this study, Escherichia coli DH5alpha whole transcriptome sequencing was performed in order to compare the different gene expression profiles between control and exposed to Wi-Fi radiofrequency radiations. Methods:Escherichia coli DH5alpha were exposed to Wi-Fi radiations. Total RNA samples( control and exposed ) were extracted by bacteria protect-Rneasy kit,treated with DNAase and subjected to sequnecing using an Illumina-NovaSeq 6000 platform. Library preparation and sequencing were performed by Macrogen (south korea).Trimmed reads are mapped to reference genome with Bowtie. HTseq was used for expression profiling. Expression profile was calculated for each sample and gene as read count.
Project description:To understand the mechanism of isopropanol tolerance of Escherichia coli for improvement of isopropanol production, we performed genome re-sequencing and transcriptome analysis of isopropanol tolerant E. coli strains obtained from parallel adaptive laboratory evolution under IPA stress.
Project description:Transcription profile of sorted Escherichia coli cells was compared to that of non-sorted cells to evaluate the effect of sorting process on transcriptome of E. coli. E. coli cells were harvest from planktonic cultures in annular reactor and stored in RNAlater. Sorting includes 2-min homogenization with OMNI TH homogenizer on ice for E. coli cells pre-stored in RNAlater and then resuspended in nuclease free phosphate buffered saline for sorting with one-step immuno-magnetic separation with anti-E. coli antibody and microbeads on a MACS separator (Miltenyi, Auburn, CA).