Project description:To detect the modifed bases in SINEUP RNA, we compared chemically modified in vitro transcribed (IVT) SINEUP-GFP RNA and in-cell transcribed (ICT) SINEUP RNA from SINEUP-GFP and sense EGFP co-transfected HEK293T/17 cells. Comparative study of Nanopore direct RNA sequencing data from non-modified and modified IVT samples against the data from ICT SINEUP RNA sample revealed modified k-mers positions in SINEUP RNA in the cell.
Project description:<p>Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-seq, an antibody-dependent technique with a high rate of false positives. Here, we addressed the presence of m6A in CHIKV and DENV RNAs. For this, we combined m6A-seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we found no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery did not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection had no effect on the m6A machinery’s localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.</p>
Project description:microRNAs are frequently modified by addition of untemplated nucleotides to the 3' end, but the role of this tailing is often unclear. Here we characterize the prevalence and functional consequences of microRNA tailing in vivo, using Caenorhabditis elegans. MicroRNA tailing in C. elegans consists mostly of mono-uridylation of mature microRNA species, with rarer mono-adenylation which is likely added to microRNA precursors. Through a targeted RNAi screen, we discover that the TUT4/TUT7 gene family member CID-1/CDE-1/PUP-1 is required for uridylation, whereas the GLD2 gene family member F31C3.2-here named GLD-2-related 2 (GLDR-2)-is required for adenylation. Thus, the TUT4/TUT7 and GLD2 gene families have broadly conserved roles in miRNA modification. We specifically examine the role of tailing in microRNA turnover. We determine half-lives of microRNAs after acute inactivation of microRNA biogenesis, revealing that half-lives are generally long (median = 20.7 h), as observed in other systems. Although we observe that the proportion of tailed species increases over time after biogenesis, disrupting tailing does not alter microRNA decay. Thus, tailing is not a global regulator of decay in C. elegans. Nonetheless, by identifying the responsible enzymes, this study lays the groundwork to explore whether tailing plays more specialized context- or miRNA-specific regulatory roles.
2024-06-01 | GSE268809 | GEO
Project description:Nanopore sequencing of modified IVT RNA
Project description:We cultured htertHME, HME2, PCS600010, and MCF10A cells in decellularized ECM scaffolds generated by BJ fibroblasts or on an uncoated, plastic cell culture dish (Unc) to analyze the potential effects of ECM signalling breast cancer development. Total RNA was extracted from cells using TRIzol (Invitrogen) and purified using Direct-zol RNA mini kit (Zymo Research) with DNase I treatment. After RNA purification, samples were confirmed to have a RIN value > 9.0 when measured on an Agilent Bioanalyzer. Libraries for RNA-Seq were prepared with KAPA Stranded RNA-Seq Kit. The workflow consisted of mRNA enrichment, cDNA generation, end repair to generate blunt ends, A-tailing, adaptor ligation and 12 cycles of PCR amplification. Unique adaptors were used for each sample in order to multiplex samples into several lanes. Sequencing was performed on Illumina Hiseq 3000/4000 with a 150bp pair-end run. A data quality check was done on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq2 v 2.17 program.
Project description:Sequencing was performed to assess the ability of Nanopore direct cDNA and native RNA sequencing to characterise human transcriptomes. Total RNA was extracted from either HAP1 or HEK293 cells, and the polyA+ fraction isolated using oligodT dynabeads. Libraries were prepared using Oxford Nanopore Technologies (ONT) kits according to manufacturers instructions. Samples were then sequenced on ONT R9.4 flow cells to generate fast5 raw reads in the ONT MinKNOW software. Fast5 reads were then base-called using the ONT Albacore software to generate Fastq reads.
Project description:In Trypanosoma brucei, most mitochondrial mRNAs undergo U-insertion/deletion editing, and 3′ adenylation and uridylation. The internal sequence changes and terminal extensions are coordinated: Pre-editing addition of the short (A) tail protects the edited transcript against 3′-5′ degradation, while post-editing A/U-tailing renders mRNA competent for ribosome recruitment. Participation of a poly(A) binding protein (PABP) in coupling of editing and 3′ modification processes has been inferred, but its identity and mechanism of action remained elusive. We report identification of KPAF4, a pentatricopeptide repeat-containing PABP which sequesters the A-tail and impedes exonucleolytic degradation. Conversely, KPAF4 inhibits uridylation of A-tailed transcripts and, therefore, premature A/U-tailing of partially-edited mRNAs. This quality check point prevents translation of incompletely edited mRNAs. Our findings also implicate the RNA editing substrate binding complex (RESC) in mediating the interaction between the 5′-end bound pyrophosphohydrolase MERS1 and 3′-end associated KPAF4 to enable mRNA circularization. This event is critical for transcript stability during the editing process.