Project description:Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a lactic acid bacteria species found on plants that is essential for many plant food fermentations. In this study, we investigated the intraspecific phenotypic and genetic diversity of 13 L. plantarum strains isolated from different plant foods, including fermented olives and tomatoes, cactus fruit, teff injera, wheat boza and wheat sourdough starter. We found that strains from the same or similar plant food types frequently exhibited similar carbohydrate metabolism and stress tolerance responses. The isolates from acidic, brine-containing ferments (olives and tomatoes) were more resistant to MRS adjusted to pH 3.5 or containing 4% w/v NaCl, than those recovered from grain fermentations. Strains from fermented olives grew robustly on raffinose as the sole carbon source and were better able to grow in the presence of ethanol (8% v/v or sequential exposure of 8% (v/v) and then 12% (v/v) ethanol) than most isolates from other plant types and the reference strain NCIMB8826R. Cell free culture supernatants from the olive-associated strains were also more effective at inhibiting growth of an olive spoilage strain of Saccharomyces cerevisiae. Multi-locus sequence typing and comparative genomics indicated that isolates from the same source tended to be genetically related. However, despite these similarities, other traits were highly variable between strains from the same plant source, including the capacity for biofilm formation and survival at pH 2 or 50°C. Genomic comparisons were unable to resolve strain differences, with the exception of the most phenotypically impaired and robust isolates, highlighting the importance of utilizing phenotypic studies to investigate differences between strains of L. plantarum. The findings show that L. plantarum is adapted for growth on specific plants or plant food types, but that intraspecific variation may be important for ecological fitness and strain coexistence within individual habitats.
Project description:We present the genome sequence of a bacterial strain isolated from park25 mutants of Drosophila melanogaster as part of efforts to better understand the microbial communities in D. melanogaster We isolated and sequenced a Lactiplantibacillus plantarum strain. We present a preliminary comparative analysis with a closely related strain.
Project description:Lactiplantibacillus plantarum is best known for its significant adaptive potential and ability to colonize different ecological niches. Different strains of L. plantarum are widely used as probiotics. To characterize the probiotic potential of the novel L. plantarum FCa3L strain isolated from fermented cabbage, we sequenced its whole genome using the Illumina MiSeq platform. This bacterial isolate had a circular chromosome of 3,365,929 bp with 44.3% GC content and a cyclic phage phiX174 of 5386 bp with 44.7% GC content. The results of in vitro studies showed that FCa3L was comparable with the reference probiotic strain L. plantarum 8PA3 in terms of acid and bile tolerance, adhesiveness, H2O2 production, and acidification rate. The strain 8PA3 possessed higher antioxidant activity, while FCa3L demonstrated superior antibacterial properties. The antibiotic resistance of FCa3L was more relevant to the probiotic strain than that of 8PA3, although a number of silent antibiotic resistance genes were identified in its genome. Genomic evidence to support adhesive and antibacterial properties, biosynthesis of bioactive metabolites, and safety of FCa3L was also presented. Thus, this study confirmed the safety and probiotic properties of L. plantarum FCa3L via complete genome and phenotype analysis, suggesting its potential as a probiotic, although further in vivo investigations are still necessary.
Project description:Lactiplantibacillus plantarum strain VHProbi V38 is a traditional lactic acid bacterial probiotic that has been commercialized for several years. Here, we report the whole-genome sequence of this strain. Sequencing yielded a 3,197,704-bp genome and 3,050 protein-coding genes.