Project description:The aim of this sequencing experiment was to make available tissue expression panels for selected fish species for comparative expression studies between the species. Tissue samples were collected for zebrafish (Danio rerio), medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss). Tissue types included liver, skin, muscle, heart, gut, gill, eye, brain for all three species, with additionally pyloric caeca, kidney, head kidney, and spleen for rainbow trout. Only liver samples were taken in replicate of four or three for rainbow trout. All fish were raised under standard rearing conditions for the species. Total RNA was extracted from the tissue samples and paired‐end sequencing of sample libraries was completed on an Illumina HiSeq 2500 with 125‐bp reads. Processed count tables per species as raw counts, FPKM, or TPM, were generated from read alignment to the Ensembl genomes of the respective species using STAR and gene level counting using RSEM and Ensembl gene annotation.
Project description:Compared to other fish models, miRNAs are currently most extensively studied and identified in zebrafish. Approximately 415 dre-miRNAs have been identified and several articles have studied some aspect of miRNA function in zebrafish such as their role in basic development and in disease pathways. However, this field of research is in its infancy and the function of several dre-miRNAs, as well as their tissue-specific expression profile, are yet to be defined. In this study, the liver and gut were dissected (wildtype/untreated fish), total and small RNA were extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing (HTS) using standard approaches. We carried out differential expression (DE) analysis and compared liver miRNA expression to gut using established bioinformatics pipelines. Through bioinformatics analysis, known and putative novel miRNAs were identified. Finally, we constructed a “miRNA matrix” that connects both total RNA-Seq and miRNA-Seq.
Project description:Purpose: Construction of 3D zebrafish spatial transcriptomics data for studying the establishment of AP axis. Methods: We performed serial bulk RNA-seq data of zebrafish embryo at three development points. Using the published spatial transcriptomics data as references, we implemented Palette to infer spatial gene expression from bulk RNA-seq data and constructed 3D embryonic spatial transcriptomics. The constructed 3D transcriptomics data was then projected on zebrafish embryo images with 3D coordinates, establishing a spatial gene expression atlas named Danio rerio Asymmetrical Maps (DreAM). Results: DreAM provides a powerful platform for visualizing gene expression patterns on zebrafish morphology and investigating spatial cell-cell interactions. Conclusions: Our work used DreAM to explore the establishment of anteroposterior (AP) axis, and identified multiple morphogen gradients that played essential roles in determining cell AP positions. Finally, we difined a hox score, and comprehensively demonstrated the spatial collinearity of Hox genes at single-cell resolution during development.
Project description:The exon junction complex (EJC) is composed of three core proteins Rbm8a, Magoh and Eif4a3 and is thought to play a role in several post-transcriptional processes. In this study we focus on understanding the role of EJC in zebrafish development. We identified transcriptome-wide binding sites of EJC in zebrafish via RNA:protein immunoprecipitation followed by deep sequencing (RIP-Seq). We find that, as in human cells, zebrafish EJC is deposited about 24 nts upstream of exon-exon junctions. We also identify transcripts regulated by Rbm8a and Magoh in zebrafish embryos using whole embryo RNA-seq from rbm8a mutant, magoh mutant and wild-type sibling embryos. This study shows that nonsense mediated mRNA decay is dysregulated in zebrafish EJC mutants.
Project description:Compared to other fish models, miRNAs are currently most extensively studied and identified in zebrafish. Approximately 415 dre-miRNAs have been identified and several articles have studied some aspect of miRNA function in zebrafish such as their role in basic development and in disease pathways. However, this field of research is in its infancy and the function of several dre-miRNAs, as well as their tissue-specific expression profile, are yet to be defined. In this study, the liver and gut were dissected (wildtype/untreated fish), total and small RNA were extracted, mRNA and miRNA libraries constructed and subjected to high throughput sequencing (HTS) using standard approaches. We carried out differential expression (DE) analysis and compared liver miRNA expression to gut using established bioinformatics pipelines. Through bioinformatics analysis, known and putative novel miRNAs were identified. Finally, we constructed a “miRNA matrix” that connects both total RNA-Seq and miRNA-Seq.