Project description:To analyze gene expression in in regulatory T cell precursors that develop in the absence of a functional Foxp3 protein as compared to that of normal regulatory T cells Keywords: Cell type comparison
Project description:To analyze gene expression in in regulatory T cell precursors that develop in the absence of a functional Foxp3 protein as compared to that of normal regulatory T cells Experiment Overall Design: Murine wild-type and mutant (delta) Foxp3 alleles were tagged with EGFP reporters. CD4 positive T cells expressing the respective tagged Foxp3 allele (Foxp3/EGFP and delta Foxp3/EGFP) were isolated from hemizygous male mice by cell sorting using FACS. CD4 positive cells that did not express the EGFP tag were a isolated. Total RNA was prepared and used in the array studies.
Project description:The gene expression profile of peripheral Foxp3+ natural regulatory T cells isolated from Foxp3/EGFP bicistronic mice was compared to that of in vitro-induced regulatory T cells and to CD4+ conventional (Foxp3-) T cells. The role of the regulatory T cell transcription factor Foxp3 in shaping the transcriptosomes of natural and induced regulatory T cells was analyzed using mice expressing a mutant FOXP3-EGFP fusion protein (Foxp3deltaEGFP). We used gene expression microarrays to examine the transcriptional programs of natural and induced regulatory T cells and the function of Foxp3 in organizing the transcriptosomes of the respective cell type Experiment Overall Design: Conventional T cells and natural and induced regulatory T cells were derived from Foxp3/EGFP bicistronic mice and analyzed for their gene expression profile. Conventional T cells, regulatory T cell precursors (CD4+Foxp3deltaEGFP+) and induced regulatory T cell precursors (CD4+Foxp3deltaEGFP+) cells were deriv ed from Foxp3deltaEGFP mice
Project description:Analysis of Foxp3 ablated peripheral regulatory T cells. Regulatory T cells require the expression of the transcription factor Foxp3 for thymic development. It is not known whether continuous expression of Foxp3 is required for the maintained function of mature regulatory T cells in the periphery. Results indicate changes to the regulatory T cell developmental program in the absence of Foxp3. Experiment Overall Design: Compare Cre recombinase treated peripheral regulatory T cells possessing a Cre sensitive Foxp3 locus to Cre treated regulatory T cells with a wild type Foxp3 locus. Cre exposure is observed via the Cre sensitive expression of the yellow flourescent protein molecule.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other