Project description:We are investigating the transcriptional response of yeast to treatment with enediynes or gamma radiation, which generate different extents of double or single strand breaks in DNA. We used microarrays to detail the global programme of gene expression underlying the DNA damage response in yeast Experiment Overall Design: Yeast were grown to mid log phase and treated with enediynes or gamma radiation (in biological triplicate) resulting in similar extents of cell killing. The responses were compared to each other and we have deciphered a gene expression profile that is specific for double and single strand breaks in DNA.
Project description:We developed an artificial genome evolution system, which we termed ‘TAQing’, by introducing multiple genomic DNA double-strand breaks using a heat-activatable endonuclease in mitotic yeast. The heat-activated endonuclease, TaqI, induced random DSBs, which resulted in diverse types of chromosomal rearrangements including translocations. Array comparative genomic hybridization (aCGH) analysis was performed with cell-fused Saccharomyces cerevisiae strains induced genome evolution by TAQing system. Some of copy number variations (CNVs) induced by massive genome rearrangements were detected in the TAQed yeast strains.
Project description:Background: Chromatin remodeling complexes facilitate the access of enzymes that mediate transcription, replication or repair of DNA by modulating nucleosome position and/or composition. Ino80 is the DNA-dependent Snf2-like ATPase subunit of a complex whose nucleosome remodeling activity requires actin-related proteins, Arp4, Arp5 and Arp8, as well as two RuvB-like DNA helicase subunits. Budding yeast mutants deficient for Ino80 function are not only hypersensitive to reagents that induce DNA double strand breaks, but also to those that impair replication fork progression. Results: To understand why ino80 mutants are sensitive to agents that perturb DNA replication, we used chromatin immunoprecipitation to map the binding sites of the Ino80 chromatin remodeling complex on four budding yeast chromosomes. We found that Ino80 and Arp5 binding sites coincide with origins of DNA replication and tRNA genes. In addition, Ino80 was bound at 67% of the promoters of genes that are sensitive to ino80 mutation. When replication forks were arrested near origins in the presence of hydroxyurea (HU), the presence of the Ino80 complex at stalled forks and at unfired origins increased dramatically. Importantly, the resumption of DNA replication after release from a HU block was impaired in the absence of Ino80 activity. Mutant cells accumulated double-strand breaks as they attempted to restart replication. Consistently, ino80-deficient cells, although proficient for checkpoint activation, delay recovery from the checkpoint response. Conclusions: The Ino80 chromatin remodeling complex is enriched at stalled replication forks where it promotes the resumption of replication upon recovery from fork arrest. Keywords: ChIP-chip
Project description:We used ChIP-seq to determine the whole-genome enrichment of histone H3 threonine 11 phosphorylation (H3 T11ph) during Saccharomyces cerevisiae meiosis. S. cerevisiae SK1 cells were synchronized for meiotic entry and 3 and 4 hour meiotic samples were obtained. As H3 T11ph is dependent on the formation of meiotic double strand breaks (DSBs), a negative control ChIP-seq sample was obtained from a strain lacking DSBs (spo11-yf). Concurrently, ChIP-seq was carried out for histone H3 as a control for comparision.