Project description:Our main objectives wereto investigate the molecular mechanisms involved in metal toxicity and detoxification in the field using juvenile yellow perch subjected to differents levels of this metal exposure. Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation. Comparison between fish Op and OpâOp using a pairwise design corresponding to the cage experiment in the reference lake Opasatica (Op), comparison between fish Du and DuâDu using a pairwise design corresponding to the cage experiment in the metal contaminated lake Dufault (Du), comparison between fish from reference lake transplanted to the metal contaminated lake (OpâDu) and fish from reference lake caged in their own lake (OpâOp) using pairwise design corresponding to the experiment of metal contamination, comparison between fish from metal contaminated lake transplanted to the reference lake (DuâOp) and fish from the metal contaminated lake caged in their own lake (DuâDu) using pairwise design corresponding to the depuration experiment.
Project description:Our main objectives wereto investigate the molecular mechanisms involved in metal toxicity and detoxification in the field using juvenile yellow perch subjected to differents levels of this metal exposure. Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation.
2016-01-11 | GSE76723 | GEO
Project description:DMAs demethylation by methanogens in enrichment cultures
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to investigate spring microbial functional genes in mesocosm-simulated shallow lake ecosystems having been undergoing nutrient enrichment and warming for nine years.
2020-12-30 | GSE155582 | GEO
Project description:methanogens and methanotrophs in Lake Taihu
Project description:Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the values of δ13C for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms. This project measures a limited number of protein fractions and δ13C values for a sample of floating, mat-like microbial biomass of an intensely phototrophic layer from Mahoney Lake, BC Canada.