Project description:Transcriptional profiling of yeast cells lacking either the protein phosphatase Ptc6 or Ptc1 and Ptc6, members of the 2C family of protein phosphatases in Saccharomyces cerevisiae.
Project description:Our previous report revealed that protein phosphatase 2A (PP2A), complexed with the B55delta-type regulatory subunit (i.e. Cdc55p), is solely responsible for the outstanding glycolytic activity of sake yeast strains (Watanabe et al., Appl. Environ. Microbiol. 85, e02083-18 (2019). However, how PP2A mediates yeast alcoholic fermentation remains elusive. Thus, RNA-seq analysis of S. cerevisiae cdc55-delta cells at the initial fermentation stage was performed to identify the downstream effector targeting the glycolytic control.
Project description:Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) diminishes the nuclear transcriptional response associated with mtDNA damage.
Project description:Yeast replicative aging is a process resembling replicative aging in mammalian cells. During aging, wild type haploid yeast cells enlarge, become sterile, and undergo nucleolar enlargement and fragmentation; we sought gene expression changes during the time of these phenotypic changes. Gene expression studied via microarrays and qPCR has shown reproducible, statistically significant changes in mRNA of genes at 12 and 18-20 generations. Our findings support previously described changes towards aerobic metabolism, decreased ribosome gene expression, and a partial Environmental Stress Response. Our novel findings include a pseudo-stationary phase, down-regulation of methylation-related metabolism, increased Nucleotide Excision Repair related mRNA, and a strong up-regulation of many of the regulatory subunits of protein phosphatase I (Glc7). These findings are correlated with aging changes in higher organisms as well as with the known involvement of protein phosphorylation states during yeast aging. J Gerontol, Jan, 2008, vol 63A, no. 1. Keywords: aging time course