Project description:We are interested in the study of the sensitivity of yeast cells lacking either the type 1 protein phosphatase Ptc6 or Ptc1 and Ptc6 to the drug rapamycin. In order to carry out our studies, we analyzed the changes in the transcription profile that a short-term incubation with rapamycin (200 ng/mL) has in wild type, ptc6 mutant and ptc1 ptc6 double mutant cells. It has been shown that inhibition of the TOR pathway by treatment with rapamycin has profound effects on the global transcriptional profile. We confirmed the previously described transcription changes induced by the drug in wild type cells and characterized an notable attenuation of the transcriptional response in cells lacking either PTC6 or PTC1 and PTC6 genes.
Project description:We are interested in the study of the already reported sensitivity of yeast cells lacking the type 1 protein phosphatase Ptc1 to the drug rapamycin. In order to carry out our studies, we analyzed the changes in the transcription profile that a short-term incubation with rapamycin (200 ng/mL) has in both, wild type and ptc1 cells. It has been shown that inhibition of the TOR pathway by treatment with rapamycin has profound effects on the global transcriptional profile. We confirmed the previously described transcription changes induced by the drug in wild type cells. Under our working conditions rapamycin increased, in wild type cells, at least 2-fold the expression of 667 genes, whereas it decreased the mRNA level of 721 genes (13.8% and 14.9% of genes with measurable expression level, respectively). Gene ontology analysis shows that, as previously documented, many induced genes falls into the NCR, Msn2/Msn4 regulated stress response or Retrograde response categories, whereas genes encoding cytoplasmic, but not mitochondrial, ribosomal proteins and the so called RIBI regulon where largely repressed. Deletion of PTC1 decreases the number of genes induced or repressed at least 2-fold by rapamycin treatment. Remarkably, lack of Ptc1 seems to lead to a general attenuation of changes triggered by rapamycin.
Project description:Transcriptional profiling of yeast cells lacking either the protein phosphatase Ptc6 or Ptc1 and Ptc6, members of the 2C family of protein phosphatases in Saccharomyces cerevisiae.
Project description:We are interested in the study of the already reported sensitivity of yeast cells lacking the type 1 protein phosphatase Ptc1 to the drug rapamycin. In order to carry out our studies, we analyzed the changes in the transcription profile that a short-term incubation with rapamycin (200 ng/mL) has in both, wild type and ptc1 cells. It has been shown that inhibition of the TOR pathway by treatment with rapamycin has profound effects on the global transcriptional profile. We confirmed the previously described transcription changes induced by the drug in wild type cells. Under our working conditions rapamycin increased, in wild type cells, at least 2-fold the expression of 667 genes, whereas it decreased the mRNA level of 721 genes (13.8% and 14.9% of genes with measurable expression level, respectively). Gene ontology analysis shows that, as previously documented, many induced genes falls into the NCR, Msn2/Msn4 regulated stress response or Retrograde response categories, whereas genes encoding cytoplasmic, but not mitochondrial, ribosomal proteins and the so called RIBI regulon where largely repressed. Deletion of PTC1 decreases the number of genes induced or repressed at least 2-fold by rapamycin treatment. Remarkably, lack of Ptc1 seems to lead to a general attenuation of changes triggered by rapamycin. The wt and the ptc1 mutant strains were analyzed in this series. We compared the expression profile of each strain treated with Rapamycin (200 ng/ml for 1h) with that of the same strain mock-treated (90% ethanol, 10% Tween-20). A Dye-swap was carried out for each RNA sample. Total number of chips analyzed: 4
Project description:The yeast Snt2 protein helps coordinate the transcriptional response to hydrogen-peroxide mediated oxidative stress (rapamycin or DMSO)
Project description:The Target Of Rapamycin (TOR) protein is a Ser/Thr kinase that functions in two distinct multiprotein complexes: TORC1 and TORC2. These conserved complexes regulate many different aspects of cell growth in response to intra- and extracellular cues. Here we report the first bona fide substrate of yeast TORC1: the AGC-kinase Sch9. Six amino acids in the c-terminus of Sch9 are directly phosphorylated by TORC1. Phosphorylation of these residues is lost upon rapamycin-treatment as well as carbon- or nitrogen-starvation and transiently reduced following application of osmotic, oxidative or thermal stress. TORC1-dependent phosphorylation is required for Sch9 activity and replacement of residues phosphorylated by TORC1 with Asp/Glu renders Sch9 activity TORC1-independent. Sch9 is required for TORC1 to properly regulate ribosome biogenesis, translation initiation and entry into G0 phase, but not expression of Gln3-dependent genes. Our results suggest that Sch9 functions analogously to the mammalian TORC1 substrate S6K1 rather than the mTORC2 substrate PKB/Akt. Keywords: time course, cell type. Global transcriptional analysis of rapamycin response was conducted on cells expressing either a wild-type, Sch9(WT), or TOR-independent allele of Sch9, Sch9(2D3E). Reference samples used were cells collected immediately prior to rapamycin treatment for the respective cell genotypes. Test samples were collected 20, 30, 60, 90, 120, and 180min post rapamycin treatment.