Project description:Maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment of oocyte transits to the zygotic genome driven expression program, and terminally differentiated oocyte and sperm are reprogrammed to totipotency. It is initiated by maternal mRNAs and proteins during the period of zygotic genome quiescence after fertilization, followed by a gradual switch to zygotic genome activation and accompanied by clearance of maternal RNAs and proteins. A key question for embryonic development is how MZT process is regulated. Here we used a low-input proteomic analysis to measure the proteomic dynamics during early development of mouse maternal-to-zygotic transition.
Project description:microRNAs play crucial roles in the early development of an organism. However the regulation of transcription through the action of microRNAs during the initial embyonic development has not been studied. We used microarrays to detail the effect of maternal microRNA mir-34 in regulation of zygotic trancription during the initial stages of Zebrafish embryonic development from one cell stage through the maternal-zygotic transition up to 24 hours post fertilization.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:microRNAs play crucial roles in the early development of an organism. However the regulation of transcription through the action of microRNAs during the initial embyonic development has not been studied. We used microarrays to detail the effect of maternal microRNA mir-34 in regulation of zygotic trancription during the initial stages of Zebrafish embryonic development from one cell stage through the maternal-zygotic transition up to 24 hours post fertilization. Zebrafish embryos were selected at specific stages of early embryonic development (1, 7, and 24 hours post fertilization). RNA was extracted and hybridized to Affymetrix microarrays. The embryos were injected with anti-microRNA LNA and were kept for constant monitoring for the indicated time points. A mockLNA was injected as a control. The embryos were visualized for any visible developmental abnormalities.
Project description:Maternal-to-zygotic transition (MZT) is a conserved and fundamental process during which the maternal environment of oocyte transits to the zygotic genome driven expression program, and terminally differentiated oocyte and sperm are reprogrammed to totipotency. Metaphase II (MII) oocytes and zygotes (one-cell embryo) serve as the mature oocyte and the initiation of pre-implantation embryo development respectively, and characterizing their molecular landscapes at protein levels plays an important role in uncovering MZT and zygotic genome activation (ZGA )in mammals. Here we used an ultrasensitive proteomic approach to depict an in-depth landscape for the very early stage of mouse MZT.
Project description:To investigate the differences in microRNA expression profiles between fibrotic and normal livers, we performed microRNA microarrays for total RNA extracts isolated from mouse livers treated with carbontetrachloride (CCl4) or corn-oil for 10 weeks (n=3/group). MicroRNAs were considered to have significant differences in expression level when the expression difference showed more than two-fold change between the experimental and control groups at p<0.05. We found that 12 miRNAs were differentially expressed in CCl4-induced fibrotic liver.
Project description:How maternal factors in oocytes initiate zygotic genome activation (ZGA) remains elusive. Recent studies indicate that DPPA2 and DPPA4 are required for establishing a 2-cell embryo-like (2C-like) state in mouse embryonic stem cells (ESCs) in a DUX-dependent manner. These results suggest that DPPA2 and DPPA4 are essential maternal factors that regulate Dux and ZGA in embryos. By analyzing maternal knockout and maternal-zygotic knockout embryos, we unexpectedly found that Dux activation, ZGA, and preimplantation development are normal in embryos without DPPA2 or DPPA4. Thus, unlike in ESCs/2C-like cells, DPPA2 and DPPA4 are dispensable for ZGA and preimplantation development.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.