Project description:The purpose of this experiment was to determine what gene expression changes are induced by acute exercise in humans, and how those changes relate to insulin sensitivity 14 subjects had muscle biopsies at rest and 30 minutes after a single exercise bout for measurement of mRNA changes. Glucose clamps were used to assess insulin sensitivity.
Project description:In this study, the primary objective was to characterise the impact of regular post-exercise (20 strength training sessions across 10 weeks) cold-water immersion (CWI) on DNA methhylation. Secondary to this, the effect of regular post-exercise CWI on strength gains and post-exercise soreness was investigated. We used microarrays to detail the global effects of CWI on DNA methylation in vastus lateralis muscle tissue.
Project description:In this study, the primary objective was to characterise the impact of regular post-exercise (20 strength training sessions across 10 weeks) cold-water immersion (CWI) on mRNA expression. Secondary to this, the effect of regular post-exercise CWI on strength gains and post-exercise soreness was investigated. We used microarrays to detail the global effects of CWI on gene expression in vastus lateralis muscle tissue.
Project description:While moderate endurance exercise has been reported to improve cardiovascular health , its effects on cardiac structure and function are not fully characterized, especially with respect to sex dimorphism. We aimed to assess the effects of moderate endurance exercise on cardiac physiology in male versus female mice.
Project description:Exercise-induced fatigue and exhaustion have been an interesting area for many physiologists.Muscle glycogen is critical forphysical performance. However, how glycogen depletion is manipulated during exercise is not very clear. Our aim here is to assess the impact of interferon regulatory factor 4 (IRF4) on skeletal muscle glycogen and subsequent regulation ofexercise capacity. Skeletal muscle-specific IRF4 knockout mice show normal body weight and insulin sensitivity, but better exercise capacity and increased glycogen content with unaltered triglyceride levels compared to control mice on chow diet. In contrast, mice overexpression of IRF4 display decreased exercise capacity and lower glycogen content. Mechanistically, IRF4 regulates glycogen-associated regulatory subunit protein targeting to glycogen (PTG) to manipulate glucose metabolism. Knockdown of PTG can reverse the effects imposed by the absence of IRF4in vivo. Our studies reveal a regulatory pathway including IRF4/PTG/glycogen synthesis that controlling exercise capacity.
Project description:Exercise is a fundamental component of human health that is associated with greater life expectancy and reduced risk of chronic diseases. While the beneficial effects of endurance exercise on human health are well established, the molecular mechanisms responsible for these observations remain unclear. Endurance exercise reduces the accumulation of mitochondrial DNA (mtDNA) mutations, alleviates multisystem pathology, and increases the lifespan of the mtDNA mutator mouse model of aging, in which the proof-reading capacity of mitochondrial polymerase gamma (POLG1) is deficient. Clearly, exercise recruited a POLG1-independent mtDNA repair pathway to induce these adaptations, a novel finding as POLG1 is canonically considered to be the sole mtDNA repair enzyme. Here we investigate the identity of this pathway, and show that endurance exercise prevents mitochondrial oxidative damage, attenuates telomere erosion, and mitigates cellular senescence and apoptosis in mtDNA mutator mice. Unexpectedly, we observe translocation of tumour suppressor protein p53 to mitochondria in response to endurance exercise that facilitates mtDNA mutation repair. Indeed, endurance exercise failed to prevent mtDNA mutations, induce mitochondrial biogenesis, preserve mitochondrial morphology, reverse sarcopenia, and mitigate premature mortality in mtDNA mutator mice with muscle-specific deletion of p53. Our data establish an exciting new role for p53 in exercise-mediated maintenance of the mtDNA genome, and presents mitochondrially-targeted p53 as a novel therapeutic modality for aging-associated diseases of mitochondrial etiology. Microarray analysis of gene expression from skeletal muscle (quadriceps femoris) from Mus musculus. N=23 samples per treatment were analysed for whole transcriptiome gene expression profile using NimbleGen Arrays. The treatment groups included wild-type C57Bl/6J mice as the control group, then two treatment groups which both contained homozygous knock-in mtDNA mutator mice (PolG; PolgAD257A/D257A). Once group of these heterozygous knock out mice received regular endurance exercise sessions while the other group remained sedentraty for 6 months. The control group specimens were wild-type litter mates to the transgenic knockout mice.
Project description:Exercise has been correlated with retardation of tumor initiation and progression. However, it is unclear what are the molecular mechanisms behind this beneficial effect of exercise. In this study, we obtained RNA-seq data from biopsies of Lewis lung carcinoma tumors in a total of 16 mice, 8 with access to running wheel and 8 without (controls).