Project description:LNCaP and its androgen insensitive derivative were profiled in order to identify genes differentially expressed during the conversion to androgen insensitivity. This experiment was performed due to the presence of an ins(7;14) localizing the entire ETV1 locus to chr 14 in LNCaP and C4-2B prostate cancer cells. Keywords: cell type comparison
Project description:LNCaP and its androgen insensitive derivative were profiled in order to identify genes differentially expressed during the conversion to androgen insensitivity. This experiment was performed due to the presence of an ins(7;14) localizing the entire ETV1 locus to chr 14 in LNCaP and C4-2B prostate cancer cells. Keywords: cell type comparison LNCaP and C4-2B were both hybridized to Agilent Whole Human Genome Oligonucleotide Microarrays, with a commercially obtained pool of benign prostate RNA serving as the reference for both cell lines. Dye flips for both cell lines were also performed
Project description:Gene expression was first compared between control and NRP2 depletd condition in prostate adenocarcinoma cell line LNCaP C4-2B . In the next set, we compared the gene expression between control and AR deplted state in LNCaP C4-2B cells.
Project description:LNCaP prostate cancer cells were infected by lentivirus expressing either ctrl or HOTAIR, and the cells were cultured in hormone-deprived condition (Ethl) or in the presence of androgen (R1881). C4-2B prostate cancer cells were infected by lentivirus expressing either shCtrl or shHOTAIR, and the cells were cultured in hormone-deprived condition (Ethl) or in the presence of androgen (R1881).
Project description:MDA PCa 2b is an androgen-responsive, AR-positive prostate cancer cell line. Here, we report the generation of an Enzalutamide-resistant derivative, MDA PCa 2b-EnzaR. Gene expression of MDA PCa 2b-EnzaR compared to its parental counterpart were assessed by short-read RNA sequencing.
Project description:Although the vital role of the androgen receptor (AR) has been well demonstrated in primary prostate cancers, its role in the androgen-insensitive prostate cancers still remains unclear. Here, we used a small hairpin RNA approach to directly assess AR activity in prostate cancer cells. Reduction of AR expression in the two androgen-sensitive prostate cancer cell lines, LNCaP and LAPC4, significantly decreased AR-mediated transcription and cell growth. Intriguingly, in two androgen-insensitive prostate cell lines, LNCaP-C42B4 and CWR22Rv1, knockdown of AR expression showed a more pronounced effect on AR-induced transcription and cell growth than androgen depletion. Using cDNA microarrays, we also compared the transcriptional profiles induced by either androgen depletion or AR knockdown. Although a significant number of transcripts appear to be regulated by both androgen depletion and AR knockdown, we observed a subset of transcripts affected only by androgen depletion but not by AR knockdown, and vice versa. Finally, we demonstrated a direct role for AR in promoting tumor formation and growth in a xenograft model. Taken together, our results elucidate an important role for the AR in androgen-insensitive prostate cancer cells, and suggest that AR can be used as a therapeutic target for androgen-insensitive prostate cancers.
Project description:We established an enzalutamide-resistant C4-2b prostate cell line that has an active androgen receptor by maintaining the C4-2b cell line in serially increasing concentrations of enzalutamide. Among the CRPC cell lines, we selected the C4-2b cell line because it is known to have AR variants, and we desired to identify enzymes with the ability to regulate the activity of AR variants as well as the wild type AR. After 2 months, we acquired resistant cells in even 10 uM enzalutamide. After validation of enzalutamide-resistant character, we analyzed global changes in mRNA expression by using quantitative mRNA-sequencing analysis.
Project description:Although the vital role of the androgen receptor (AR) has been well demonstrated in primary prostate cancers, its role in the androgen-insensitive prostate cancers still remains unclear. Here, we used a small hairpin RNA approach to directly assess AR activity in prostate cancer cells. Reduction of AR expression in the two androgen-sensitive prostate cancer cell lines, LNCaP and LAPC4, significantly decreased AR-mediated transcription and cell growth. Intriguingly, in two androgen-insensitive prostate cell lines, LNCaP-C42B4 and CWR22Rv1, knockdown of AR expression showed a more pronounced effect on AR-induced transcription and cell growth than androgen depletion. Using cDNA microarrays, we also compared the transcriptional profiles induced by either androgen depletion or AR knockdown. Although a significant number of transcripts appear to be regulated by both androgen depletion and AR knockdown, we observed a subset of transcripts affected only by androgen depletion but not by AR knockdown, and vice versa. Finally, we demonstrated a direct role for AR in promoting tumor formation and growth in a xenograft model. Taken together, our results elucidate an important role for the AR in androgen-insensitive prostate cancer cells, and suggest that AR can be used as a therapeutic target for androgen-insensitive prostate cancers. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set Computed
Project description:We sought to determine the effect of a minor spliceosome inhibition by U6atac snRNA depletion in prostate cancer. We performed siRNA-mediated knock-down (96h) of the minor spliceosome snRNA U6atac in androgen-sensitive LNCaP cells, androgen-insensitive C4-2 and 22Rv1 cells and in patient derived neuroendocrine organoids (PM154). We compared global transcriptional alterations and lineage dependency using RNA-seq and scRNAseq.
Project description:Although the vital role of the androgen receptor (AR) has been well demonstrated in primary prostate cancers, its role in the androgen-insensitive prostate cancers still remains unclear. Here, we used a small hairpin RNA approach to directly assess AR activity in prostate cancer cells. Reduction of AR expression in the two androgen-sensitive prostate cancer cell lines, LNCaP and LAPC4, significantly decreased AR-mediated transcription and cell growth. Intriguingly, in two androgen-insensitive prostate cell lines, LNCaP-C42B4 and CWR22Rv1, knockdown of AR expression showed a more pronounced effect on AR-induced transcription and cell growth than androgen depletion. Using cDNA microarrays, we also compared the transcriptional profiles induced by either androgen depletion or AR knockdown. Although a significant number of transcripts appear to be regulated by both androgen depletion and AR knockdown, we observed a subset of transcripts affected only by androgen depletion but not by AR knockdown, and vice versa. Finally, we demonstrated a direct role for AR in promoting tumor formation and growth in a xenograft model. Taken together, our results elucidate an important role for the AR in androgen-insensitive prostate cancer cells, and suggest that AR can be used as a therapeutic target for androgen-insensitive prostate cancers. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set