Project description:To investigate the mode of action of ccc_R08, a first-in-class orally available HBV cccDNA inhibitor, we designed and implemented two orthogonal and complementary approaches: a forward pharmacology approach and a reverse pharmacology approach. Bioinformatics analysis integrating biological knowledge with the observations from both approaches offered us preliminary insights into the mode of action of ccc_R08.
Project description:Exosomes are extracellular vesicles necessary for cell communication, including cancer cells. Tumor-derived exosomes have been essential in biomarker screening and also therapeutic targets. In the present study, we used proteomics and metabolomics approaches to investigate the CCA biomarkers and molecular targets action of atractylodin and β-eudesmol in the exosomes isolated from cell culture media.
Project description:Lung cancer is associated with high prevalence and mortality, and despite significant successes with targeted drugs in genomically defined subsets of lung cancer and immunotherapy, the majority of patients currently does not benefit from these therapies. Through a targeted drug screen, we found the recently approved multi-kinase inhibitor midostaurin to have potent activity in several lung cancer cells independent of its intended target, PKC, or a specific genomic marker. To determine the underlying mechanism of action we applied a layered functional proteomics approach and a new data integration method. Using chemical proteomics, we identified multiple midostaurin kinase targets in these cells. Network-based integration of these targets with quantitative tyrosine and global phosphoproteomics data using protein-protein interactions from the STRING database suggested multiple targets are relevant for the mode of action of midostaurin. Subsequent functional validation using RNA interference and selective small molecule probes showed that simultaneous inhibition of TBK1, PDK1 and AURKA was required to elicit midostaurin’s cellular effects. Immunoblot analysis of downstream signaling nodes showed that combined inhibition of these targets altered PI3K/AKT and cell cycle signaling pathways that in part converged on PLK1. Furthermore, rational combination of midostaurin with the more potent PLK1 inhibitor BI2536, which is in advanced clinical trials, elicited strong synergy. Our results demonstrate that combination of complementary functional proteomics approaches and subsequent network-based data integration can reveal novel insight into the complex mode of action of multi-kinase inhibitors, actionable targets for drug discovery and cancer vulnerabilities. Finally, we illustrate how this knowledge can be utilized for the rational design of synergistic drug combinations with high potential for clinical translation.
Project description:Lung cancer is associated with high prevalence and mortality, and despite significant successes with targeted drugs in genomically defined subsets of lung cancer and immunotherapy, the majority of patients currently does not benefit from these therapies. Through a targeted drug screen, we found the recently approved multi-kinase inhibitor midostaurin to have potent activity in several lung cancer cells independent of its intended target, PKC, or a specific genomic marker. To determine the underlying mechanism of action we applied a layered functional proteomics approach and a new data integration method. Using chemical proteomics, we identified multiple midostaurin kinase targets in these cells. Network-based integration of these targets with quantitative tyrosine and global phosphoproteomics data using protein-protein interactions from the STRING database and NetworKIN substrate prediction suggested multiple targets are relevant for the mode of action of midostaurin. Subsequent functional validation using RNA interference and selective small molecule probes showed that simultaneous inhibition of TBK1, PDK1 and AURKA was required to elicit midostaurin’s cellular effects. Immunoblot analysis of downstream signaling nodes showed that combined inhibition of these targets altered PI3K/AKT and cell cycle signaling pathways that in part converged on PLK1. Furthermore, rational combination of midostaurin with the more potent PLK1 inhibitor BI2536, which is in advanced clinical trials, elicited strong synergy. Our results demonstrate that combination of complementary functional proteomics approaches and subsequent network-based data integration can reveal novel insight into the complex mode of action of multi-kinase inhibitors, actionable targets for drug discovery and cancer vulnerabilities. Finally, we illustrate how this knowledge can be utilized for the rational design of synergistic drug combinations with high potential for clinical translation.
Project description:Lung cancer is associated with high prevalence and mortality, and despite significant successes with targeted drugs in genomically defined subsets of lung cancer and immunotherapy, the majority of patients currently does not benefit from these therapies. Through a targeted drug screen, we found the recently approved multi-kinase inhibitor midostaurin to have potent activity in several lung cancer cells independent of its intended target, PKC, or a specific genomic marker. To determine the underlying mechanism of action we applied a layered functional proteomics approach and a new data integration method. Using chemical proteomics, we identified multiple midostaurin kinase targets in these cells. Network-based integration of these targets with quantitative tyrosine and global phosphoproteomics data using protein-protein interactions from the STRING database suggested multiple targets are relevant for the mode of action of midostaurin. Subsequent functional validation using RNA interference and selective small molecule probes showed that simultaneous inhibition of TBK1, PDK1 and AURKA was required to elicit midostaurin’s cellular effects. Immunoblot analysis of downstream signaling nodes showed that combined inhibition of these targets altered PI3K/AKT and cell cycle signaling pathways that in part converged on PLK1. Furthermore, rational combination of midostaurin with the more potent PLK1 inhibitor BI2536, which is in advanced clinical trials, elicited strong synergy. Our results demonstrate that combination of complementary functional proteomics approaches and subsequent network-based data integration can reveal novel insight into the complex mode of action of multi-kinase inhibitors, actionable targets for drug discovery and cancer vulnerabilities. Finally, we illustrate how this knowledge can be utilized for the rational design of synergistic drug combinations with high potential for clinical translation.
Project description:Sp7/Osterix is a master regulator of osteoblast specification. To identify the Sp7-mediated gene regulatory network in osteoblasts, we performed Sp7 ChIP-seq on primary mouse calvarial osteoblasts comparing the DNA binding profile with the transcriptional profile of Sp7-positive osteoblasts. Analysis of these identified a network of Sp7 regulated osteoblast targets and provides a new insight into the mode of Sp7 action in osteoblast. To further study for the Sp7 mode, we performed ChIP-seq for Sp1, Sp7, Dlx5, as a potential Sp7 partner identified in this study and mutated Sp7 which has mutations in the zinc finger domain, by using in vitro system with a pre-osteoblast mouse cell line, MC3T3E1.
Project description:Enzymes of the Ten Eleven Translocation (TET) family play a key role in the regulation of gene expression in many species by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark, into 5-hydroxymethylcytosine (5hmC). Yet, TET proteins also have non-canonical modes of action beyond 5mC oxidation, notably in Drosophila, whose genomes is devoid of 5mC. Here, we used a combination of NGS analyses to studied the funciton and mode of action of Tet in the central nervous system of Drosophila larvae.