Project description:While cell fate determination and maintenance are important in establishing and preserving tissue identity and function during development, aberrant cell fate transition leads to cancer cell heterogeneity and resistance to treatment. Here, we report an unexpected role for the transcription factor p63 (Trp63/TP63) in the fate choice of squamous versus neuroendocrine lineage in esophageal development and malignancy. Deletion of p63 results in extensive neuroendocrine differentiation in the developing mouse esophagus and esophageal progenitors derived from human embryonic stem cells. In human esophageal neuroendocrine carcinoma (eNEC) cells, p63 is transcriptionally silenced by EZH2-mediated H3K27 trimethylation (H3K27me3). Upregulation of the major p63 isoform ΔNp63α, through either ectopic expression or EZH2 inhibition, promotes squamous transdifferentiation of eNEC cells. Together these findings uncover p63 as a rheostat in coordinating the transition between squamous and neuroendocrine cell fates during esophageal development and tumor progression.
Project description:While cell fate determination and maintenance are important in establishing and preserving tissue identity and function during development, aberrant cell fate transition leads to cancer cell heterogeneity and resistance to treatment. Here, we report an unexpected role for the transcription factor p63 (Trp63/TP63) in the fate choice of squamous versus neuroendocrine lineage in esophageal development and malignancy. Deletion of p63 results in extensive neuroendocrine differentiation in the developing mouse esophagus and esophageal progenitors derived from human embryonic stem cells. In human esophageal neuroendocrine carcinoma (eNEC) cells, p63 is transcriptionally silenced by EZH2-mediated H3K27 trimethylation (H3K27me3). Upregulation of the major p63 isoform ΔNp63α, through either ectopic expression or EZH2 inhibition, promotes squamous transdifferentiation of eNEC cells. Together these findings uncover p63 as a rheostat in coordinating the transition between squamous and neuroendocrine cell fates during esophageal development and tumor progression.
Project description:While cell fate determination and maintenance are important in establishing and preserving tissue identity and function during development, aberrant cell fate transition leads to cancer cell heterogeneity and resistance to treatment. Here, we report an unexpected role for the transcription factor p63 (Trp63/TP63) in the fate choice of squamous versus neuroendocrine lineage in esophageal development and malignancy. Deletion of p63 results in extensive neuroendocrine differentiation in the developing mouse esophagus and esophageal progenitors derived from human embryonic stem cells. In human esophageal neuroendocrine carcinoma (eNEC) cells, p63 is transcriptionally silenced by EZH2-mediated H3K27 trimethylation (H3K27me3). Upregulation of the major p63 isoform ΔNp63α, through either ectopic expression or EZH2 inhibition, promotes squamous transdifferentiation of eNEC cells. Together these findings uncover p63 as a rheostat in coordinating the transition between squamous and neuroendocrine cell fates during esophageal development and tumor progression.
Project description:While cell fate determination and maintenance are important in establishing and preserving tissue identity and function during development, aberrant cell fate transition leads to cancer cell heterogeneity and resistance to treatment. Here, we report an unexpected role for the transcription factor p63 (Trp63/TP63) in the fate choice of squamous versus neuroendocrine lineage in esophageal development and malignancy. Deletion of p63 results in extensive neuroendocrine differentiation in the developing mouse esophagus and esophageal progenitors derived from human embryonic stem cells. In human esophageal neuroendocrine carcinoma (eNEC) cells, p63 is transcriptionally silenced by EZH2-mediated H3K27 trimethylation (H3K27me3). Upregulation of the major p63 isoform ΔNp63α, through either ectopic expression or EZH2 inhibition, promotes squamous transdifferentiation of eNEC cells. Together these findings uncover p63 as a rheostat in coordinating the transition between squamous and neuroendocrine cell fates during esophageal development and tumor progression.
Project description:While cell fate determination and maintenance are important in establishing and preserving tissue identity and function during development, aberrant cell fate transition leads to cancer cell heterogeneity and resistance to treatment. Here, we report an unexpected role for the transcription factor p63 (Trp63/TP63) in the fate choice of squamous versus neuroendocrine lineage in esophageal development and malignancy. Deletion of p63 results in extensive neuroendocrine differentiation in the developing mouse esophagus and esophageal progenitors derived from human embryonic stem cells. In human esophageal neuroendocrine carcinoma (eNEC) cells, p63 is transcriptionally silenced by EZH2-mediated H3K27 trimethylation (H3K27me3). Upregulation of the major p63 isoform ΔNp63α, through either ectopic expression or EZH2 inhibition, promotes squamous transdifferentiation of eNEC cells. Together these findings uncover p63 as a rheostat in coordinating the transition between squamous and neuroendocrine cell fates during esophageal development and tumor progression.
Project description:While cell fate determination and maintenance are important in establishing and preserving tissue identity and function during development, aberrant cell fate transition leads to cancer cell heterogeneity and resistance to treatment. Here, we report an unexpected role for the transcription factor p63 (Trp63/TP63) in the fate choice of squamous versus neuroendocrine lineage in esophageal development and malignancy. Deletion of p63 results in extensive neuroendocrine differentiation in the developing mouse esophagus and esophageal progenitors derived from human embryonic stem cells. In human esophageal neuroendocrine carcinoma (eNEC) cells, p63 is transcriptionally silenced by EZH2-mediated H3K27 trimethylation (H3K27me3). Upregulation of the major p63 isoform ΔNp63α, through either ectopic expression or EZH2 inhibition, promotes squamous transdifferentiation of eNEC cells. Together these findings uncover p63 as a rheostat in coordinating the transition between squamous and neuroendocrine cell fates during esophageal development and tumor progression.
Project description:SOX2 is a transcription factor essential for pluripotent stem cells, and development and maintenance of squamous epithelium. We previously reported SOX2 an oncogene subject to highly recurrent genomic amplification in squamous cell carcinomas (SCCs). Here we demonstrate in SCCs that SOX2 interacts with another master squamous transcription factor p63, and through ChIP-seq show that genomic occupancy of SOX2 overlaps with that of p63 at a large number of loci and that they cooperatively regulate gene expression including ETV4, which we find essential for SOX2-amplified SCC cell survival. Furthermore, SOX2 binds to distinct genomic loci in SCCs than in embryonic stem cells and the SOX2-p63 coordinate binding is unique to SCC. In addition, a subset of SOX2 genomic binding sites in SCC that lack p63 co-occupancy are co-occupied by the AP-1 transcriptional complex. These demonstrate that SOX2’s actions in SCC differ substantially from its role in pluripotency and identify novel SOX2 interactions that will enable deeper characterization of SOX2’s function in SCC. SOX2 and p63 ChIP-seq from three lung and esophageal squamous carcinoma cell lines with amplification of SOX2 as well as SOX2 ChIP-seq from an ES cells.
Project description:This study was designed to identify genes aberrantly expressed in esophageal squamous cell carcinoma (ESCC) cells. Three esophageal squamous cell carcinoma-derived cell lines and one normal human esophageal squamous cell line were analyzed.
Project description:Profiles of esophageal squamous cell carcinoma and normal esophageal normal epithelium normal cell line. Analysis provides validation of novel microRNA targets prediction algorithms. esophageal squamous cell carcinoma:14, normal epithelium cell:2
Project description:The purpose of this study is to explore the circRNAs expression profiles in the plasma from esophageal squamous cell carcinoma (ESCC) patients.The purpose of this study is to explore the circRNAs expression profiles in the plasma from esophageal squamous cell carcinoma (ESCC) patients.