Project description:Heterochromatin is important for the maintenance of genome stability and regulation of gene expression, yet our knowledge of heterochromatin structure and function is incomplete. We identified four novel Drosophila heterochromatin proteins. Three of these proteins (HP3, HP4, and HP5) interact directly with HP1, while HP6 in turn binds to each of these three proteins. Immunofluorescence microscopy and genome-wide mapping of in vivo binding sites shows that all four proteins are components of heterochromatin. Depletion of HP1 causes redistribution of all four proteins, indicating that HP1 is essential for their heterochromatic targeting. Finally, mutants of HP4 and HP5 are dominant suppressors of position effect variegation, demonstrating their importance in heterochromatic gene silencing. These results indicate that HP1 acts as a docking platform for several mediator proteins that contribute to heterochromatin function. Keywords: DamID knock-down
Project description:Heterochromatin protein 1 (HP1) proteins are important regulators of heterochromatin mediated gene silencing and chromosome structure and it is well known as the reader of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me). In Drosophila three different histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9; Su(var)3-9, Setdb1 and G9a. To gain insights on the dependence of HP1a on the three different HKMTs, the division of labor between these methyl transferases and the dependence of HP1a on H3K9me we have studied HP1a binding in relation to H3K9me in mutants of these HKMTs. We show that Su(var)3-9 is responsible for the HP1a H3K9me-dependent binding in pericentromeric regions while Setdb1 controls the HP1a H3K9me-dependent binding to cytological region 2L:31 and together with POF chromosome 4. HP1a binds to the promoters and within gene bodies of active genes in these three regions. More importantly, HP1a bound at promoters of active genes are independent of H3K9me and POF and is associated to heterochromatin protein 2 (HP2) and open chromatin. Our results supports a model where HP1a nucleates with high affinity independent of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites. In total 44 samples; 2 replicates for each genotype and for each ChIP (HP1a, H3K9me2 and H3K9me3)
Project description:Heterochromatin protein 1 (HP1) proteins are important regulators of heterochromatin mediated gene silencing and chromosome structure and it is well known as the reader of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me). In Drosophila three different histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9; Su(var)3-9, Setdb1 and G9a. To gain insights on the dependence of HP1a on the three different HKMTs, the division of labor between these methyl transferases and the dependence of HP1a on H3K9me we have studied HP1a binding in relation to H3K9me in mutants of these HKMTs. We show that Su(var)3-9 is responsible for the HP1a H3K9me-dependent binding in pericentromeric regions while Setdb1 controls the HP1a H3K9me-dependent binding to cytological region 2L:31 and together with POF chromosome 4. HP1a binds to the promoters and within gene bodies of active genes in these three regions. More importantly, HP1a bound at promoters of active genes are independent of H3K9me and POF and is associated to heterochromatin protein 2 (HP2) and open chromatin. Our results supports a model where HP1a nucleates with high affinity independent of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.
Project description:Heterochromatin-protein 1 (HP1) is a functionally diverse family of proteins. In particular, Drosophila dHP1c forms a complex with the transcription factors WOC and ROW (dHP1EU) that localizes at euchromatin and regulates gene expression. We used microarrays to analyse the changes in gene expression after row depletion by RNAi.
Project description:Heterochromatin-protein 1 (HP1) is a functionally diverse family of proteins. In particular, Drosophila dHP1c forms a complex with the transcription factors WOC and ROW (dHP1EU) that localizes at euchromatin and regulates gene expression. We used microarrays to analyse the changes in gene expression after row depletion by RNAi. For expression profiling analyses, total RNAs were prepared from control S2 cells and upon RNAi-mediated depletion of ROW, converted to cDNA and hybridized to Drosophila Genome 2.0 GeneChip (Affymetrix).