Project description:The replication of a genomic region during S-phase can be highly dynamic between cell types that differ in transcriptome and epigenome. Replication timing has been positively correlated with several histone modifications that occur at active genes, while repressive histone modifications mark late replicating regions. This raises the question if chromatin modulates the initiating events of replication. To gain insights into this question we have studied the function of heterochromatin protein 1 (HP1), a reader of to the repressive histone lysine 9 methylation of H3, in genome-wide organization of replication. Cells with reduced levels of HP1 show an advanced replication timing of centromeric repeats in agreement with the model that repressive chromatin mediates the very late replication of large clusters of constitutive heterochromatin. Surprisingly however regions with high levels of interspersed repeats on the chromosomal arms in particular on chromosome 4 and in pericentromeric regions of chromosome 2 behave differently. Here loss of HP1 results in delayed replication timing. The fact that these regions are bound by HP1 suggests a direct effect. Thus while HP1 mediates very late replication of centromeric DNA it is also required for early replication of autosomal regions with high levels of repeats. This observation of opposing functions of HP1 suggests a model where repeat inactivation on autosomes is required for proper activation of origins of replication that fire early, while HP1 mediated repression at constitutive heterochromatin is required to ensure replication of centromeric repeats at the end of S phase. Keywords: RNAi, chip-chip, replication timing
Project description:Histone H4K16 acetylation modulates the dynamics of linker H1 and heterochromatin protein HP1 in male X chromosome dosage compensation
Project description:Drosophila heterochromatin protein 1- HP11 is believed to be involved in active transcription, transcriptional gene silencing, and the formation of heterochromatin2-7. However, little is known about the function of HP1 during development. Using a Gal4-induced RNA interference system, we show that conditional depletion of HP1 in transgenic flies results in preferential lethality in male flies. Cytological analysis of mitotic chromosomes reveals that HP1 depletion causes sex-biased chromosomal defects, including telomere fusions. The global levels of specific histone modifications, particularly the hallmarks of active chromatin, are preferentially increased in males as well. Expression analysis revealed that approximately twice as many genes are specifically regulated by HP1 in males compared to females. Furthermore, HP1-regulated genes showed greater enrichment for HP1 binding in males. Taken together, these results reveal that HP1 modulates chromosomal integrity, histone modifications, and transcription in a sex-specific manner. Keywords: sex-specific, HP1, gender comparison
Project description:Salivary gland polytene chromosomes of Drosophila melanogaster have a reproducible set of intercalary heterochromatin sites, characterized by late DNA replication, underreplicated DNA, breaks and frequent ectopic contacts. The SuUR mutation has been shown to suppress underreplication, and wild-type SUUR protein is found at late-replicating intercalary heterochromatin sites and in pericentric heterochromatin. We performed a genome-wide mapping of SUUR target genes in the non-polytenic Drosophila Kc cells by using DamID. This approach is based on the ability of a chromatin protein fused to Escherichia coli DNA adenine methyltransferase (Dam) to methylate the native binding site of the chromatin protein. Dam-fusion proteins are expressed at very low levels to avoid mistargeting. Subsequently, methylated DNA fragments are isolated, labeled (using Cy3 or Cy5) and hybridized to a microarray. Methylated DNA fragments from cells transfected with Dam alone served as reference. Genomic binding sites of the protein can then be identified based on the targeted methylation pattern. For detailed background information on DamID, see: van Steensel, B., Delrow, J. & Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27, 304-8 (2001); van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18, 424-8 (2000). We generated both an N- and a C-terminal fusion of the full-length SuUR open reading frame with Dam (Dam-SUUR and SUUR-Dam, respectively). For each SUUR fusion protein we performed four independent replicates. We used for this study a cDNA array developed by the GeneCore facility in EMBL (Heidelberg, Germany), covering the DGC1 and DGC2 cDNA libraries from the Berkeley Drosophila Genome Project, which represents more than 70% of the coding Drosophila genome. We found that SUUR preferentially binds to genes that are transcriptionally silent and late replicated. We compared the SUUR binding profile to the binding profile of three PcG proteins, which are known to bind to many intercalary heterochromatin sites, and found that there is a significant overlap with Pc and esc, but less with Sce. A significant overlap is also detected with two markers of pericentric heterochromatin, the heterochromatin proteins HP1 and SU(VAR)3-9. Finally, we demonstrated that SUUR binding profile negatively correlates with DNA polytenization level in salivary gland polytene chromosomes. Taken together, these results suggest that SUUR modulates the level of underreplication by direct binding to intercalary and pericentric heterochromatin.
Project description:Heterochromatin protein 1 (HP1) proteins are important regulators of heterochromatin mediated gene silencing and chromosome structure and it is well known as the reader of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me). In Drosophila three different histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9; Su(var)3-9, Setdb1 and G9a. To gain insights on the dependence of HP1a on the three different HKMTs, the division of labor between these methyl transferases and the dependence of HP1a on H3K9me we have studied HP1a binding in relation to H3K9me in mutants of these HKMTs. We show that Su(var)3-9 is responsible for the HP1a H3K9me-dependent binding in pericentromeric regions while Setdb1 controls the HP1a H3K9me-dependent binding to cytological region 2L:31 and together with POF chromosome 4. HP1a binds to the promoters and within gene bodies of active genes in these three regions. More importantly, HP1a bound at promoters of active genes are independent of H3K9me and POF and is associated to heterochromatin protein 2 (HP2) and open chromatin. Our results supports a model where HP1a nucleates with high affinity independent of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites.
Project description:Heterochromatin is important for the maintenance of genome stability and regulation of gene expression, yet our knowledge of heterochromatin structure and function is incomplete. We identified four novel Drosophila heterochromatin proteins. Three of these proteins (HP3, HP4, and HP5) interact directly with HP1, while HP6 in turn binds to each of these three proteins. Immunofluorescence microscopy and genome-wide mapping of in vivo binding sites shows that all four proteins are components of heterochromatin. Depletion of HP1 causes redistribution of all four proteins, indicating that HP1 is essential for their heterochromatic targeting. Finally, mutants of HP4 and HP5 are dominant suppressors of position effect variegation, demonstrating their importance in heterochromatic gene silencing. These results indicate that HP1 acts as a docking platform for several mediator proteins that contribute to heterochromatin function. Keywords: DamID knock-down
Project description:Heterochromatin protein 1 (HP1) proteins are important regulators of heterochromatin mediated gene silencing and chromosome structure and it is well known as the reader of the heterochromatin mark methylation of histone H3 lysine 9 (H3K9me). In Drosophila three different histone lysine methyl transferases (HKMTs) are associated with the methylation of H3K9; Su(var)3-9, Setdb1 and G9a. To gain insights on the dependence of HP1a on the three different HKMTs, the division of labor between these methyl transferases and the dependence of HP1a on H3K9me we have studied HP1a binding in relation to H3K9me in mutants of these HKMTs. We show that Su(var)3-9 is responsible for the HP1a H3K9me-dependent binding in pericentromeric regions while Setdb1 controls the HP1a H3K9me-dependent binding to cytological region 2L:31 and together with POF chromosome 4. HP1a binds to the promoters and within gene bodies of active genes in these three regions. More importantly, HP1a bound at promoters of active genes are independent of H3K9me and POF and is associated to heterochromatin protein 2 (HP2) and open chromatin. Our results supports a model where HP1a nucleates with high affinity independent of H3K9me in promoters of active genes and then spreads via H3K9 methylation and transient looping contacts with those H3K9me target sites. In total 44 samples; 2 replicates for each genotype and for each ChIP (HP1a, H3K9me2 and H3K9me3)