Project description:An indica rice cultivar FR13A, is widely grown as submergence tolerant variety and can withstand submergence up to two weeks. The tolerance is governed by a major QTL on chromosome 9 and represented as sub1. Recently the gene for sub1 has been mapped and cloned. However, the trait is governed by several QTLs and not by a single gene. To understand the mechanism of submergence tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and submerged conditions at seedling stage. Keywords: Mechanism of submergence tolerance
Project description:An indica rice cultivar FR13A, is widely grown as submergence tolerant variety and can withstand submergence up to two weeks. The tolerance is governed by a major QTL on chromosome 9 and represented as sub1. Recently the gene for sub1 has been mapped and cloned. However, the trait is governed by several QTLs and not by a single gene. To understand the mechanism of submergence tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and submerged conditions at seedling stage. SUBMITTER_CITATION: Combining In Silico Mapping and Arraying: an Approach to Identifying Common Candidate Genes for Submergence Tolerance and Resistance to Bacterial Leaf Blight in Rice. Mol. Cells 2007 24:394-408. Experiment Overall Design: We used Agilent rice gene chips (G4138A) to investigate the transcript level changes in rice leaf tissues during submergence treatment. We used two contrasting rice genotypes (FR13A tolerant and IR24 susceptible) differing in submergence response. Plants were grown in growth chambers and treated by submerging the plants in transparent polythene bags on14th DAS. Leaf sampling was done in both constitutive and treated plants at 3 time points. Two replications of microarray experiments were carried out by hybridizing the RNA from tolerant samples against the susceptible lines.
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Keywords: Mechanism of salt tolerance
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5M-bM-^@M-^Y rapid amplification of cDNA ends (RLM 5M-bM-^@M-^Y-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice. The degradome sequence of Young inflorescences from Oryza sativa L. ssp. indica (93-11) was sequenced
Project description:A submergence tolerant indica rice cultivar FR13A, was also reported to withstand salt stress and proven in our experiments. The mechanism of tolerance is yet to be studied by forward genetics approach. However, it is known that salt stress tolerance is governed by several QTLs and not by a single gene. To understand the mechanism of such a complex mechanism of salt tolerance we selected, two indica rice genotypes namely, I) FR13A, a tolerant indica variety and ii) IR24, a susceptible genotype for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under constitutive and salt stress conditions at seedling stage. Experiment Overall Design: We used Agilent rice gene chips (G4138A) to investigate the transcript level changes in rice plant tissues during salt stress treatment. We used two contrasting rice genotypes (FR13A tolerant and IR24 susceptible) differing in salt stress response. Plants were grown in growth chambers and treated with 150 mM salt concentration at 14th DAS. Sampling was done in both constitutive and treated plants at 3 time points. Two replications of microarray experiments were carried out by hybridizing the RNA from tolerant samples against the susceptible lines on the same slide.
Project description:The rice gene SUB1A-1 confers flooding tolerance restricting shoot growth during submergence. Rice with SUB1A also show more rapid recovery after submergence ends, but mechanisms by which SUB1A improves recovery from submergence had not been examined. In this study, the transcriptome was sequenced at five time points over a 24 hour submergence recovery period in near-isogenic rice genotypes with and without SUB1A.
Project description:Rice tungro disease is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. Infection with RTSV alone does not result in any distinctive symptoms in Taichung Native 1 (TN1) that is one of RTSV susceptive indica rice cultivar. To elucidate the basis of asymptomatic response of rice to RTSV at the gene expression level, global gene response in RTSV-infected TN1 was detected by custom microarray. Keywords: time course, virus infection, disease response