Project description:The etiology of trauma-hemorrhage shock-induced acute lung injury has been difficult to elucidate due, at least in part, to the inability of in vivo studies to separate the non-injurious pulmonary effects of trauma-hemorrhage from the tissue injurious ones. To circumvent this in vivo limitation, we utilized a model of trauma-hemorrhagic shock (T/HS) in which T/HS-lung injury was abrogated by dividing the mesenteric lymph duct. In this way, it was possible to separate the pulmonary injurious response from the non-injurious systemic response to T/HS by comparing the pulmonary molecular response of rats subjected to T/HS which did and did not develop lung injury as well as to non-shocked rats. Utilizing high-density oligonucleotide arrays and treatment group comparisons of whole lung tissue collected at 3 hours after the end of the shock or sham-shock period, 139 of the 8,799 assessed genes were differentially expressed. Experiment Overall Design: Four groups of rats (n=3) were studied in order to identify changes in pulmonary gene expression associated with T/HS, both in the presence and absence of lung injury. These included trauma-sham shock (T/SS) rats which had a laparotomy (trauma) but were not subjected to hemorrhagic shock. These rats had no lung injury and served as controls for rats which were subjected to T/HS (laparotomy plus 90 min of shock) and had lung injury. Differences in gene expression between these two groups would represent both the effects of hemorrhagic shock as well as lung injury. To distinguish the gene response of hemorrhagic shock from the gene response associated with lung injury, gene expression was also compared between T/HS rats (hemorrhage and lung injury) and rats subjected to T/HS plus lymph duct ligation (T/HS-LDL), since the T/HS-LDL rats experienced hemorrhagic shock but had no measurable lung injury. Lastly, to identify hemorrhagic shock- modified genes, the pulmonary gene response of T/HS-LDL (hemorrhage without lung injury) were compared to rats subjected to T/SS plus LDL (no hemorrhage or lung injury). Three hours after the end of the 90 min shock or sham-shock period (i.e. 4.5 hrs after the induction of T/HS), the rats were sacrificed and specimens harvested for genechip analysis and histology.
Project description:The etiology of trauma-hemorrhage shock-induced acute lung injury has been difficult to elucidate due, at least in part, to the inability of in vivo studies to separate the non-injurious pulmonary effects of trauma-hemorrhage from the tissue injurious ones. To circumvent this in vivo limitation, we utilized a model of trauma-hemorrhagic shock (T/HS) in which T/HS-lung injury was abrogated by dividing the mesenteric lymph duct. In this way, it was possible to separate the pulmonary injurious response from the non-injurious systemic response to T/HS by comparing the pulmonary molecular response of rats subjected to T/HS which did and did not develop lung injury as well as to non-shocked rats. Utilizing high-density oligonucleotide arrays and treatment group comparisons of whole lung tissue collected at 3 hours after the end of the shock or sham-shock period, 139 of the 8,799 assessed genes were differentially expressed. Keywords: Treatment response to shock
Project description:Hemorrhagic shock with injury results in alterations of the metabolic state of an organism, which contribute to organ dysfunction and death. Previous investigations have explored the effects of carbohydrate prefeed in murine models but few in clinically relevant large animal models. We performed carbohydrate prefeed in pigs undergoing simulated polytrauma and hemorrhagic shock with resuscitation to determine if carbohydrate prefeeding if the metabolic response to shock is dependent on fed state. Sixty-four Yorkshire pigs were divided into two experimental groups: fasted and prefed in additon to two Control groups. Experimental animals were subjected to a standardized hemorrhagic shock protocol, including pulmonary contusion and liver crush injury. To determine molecular alterations in response to trauma as a result of prefeeding, liver and muscle biopsies in addition to serum and urine samples were obtained at set timepoints throughout the procedure. The samples were prepared and analyzed by NMR spectroscopy.
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Analysis of the areas directly (spinal cord) and indirectly (raphe and sensorimotor cortex) affected by injury will help understanding mechanisms of SCI. Hypothesis: Areas of the brain primarily affected by spinal cord injury are the Raphe and the Sensorimotor cortex thus gene expression profiling these two areas might contribute understanding the mechanisms of spinal cord injury. Specific Aim: The project aims at finding significantly altered genes in the Raphe and Sensorimotor cortex following an induced moderate spinal cord injury in T9.
Project description:A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock Mice were divided into five groups, anesthetized and surgically treated to simulate a time course and trauma severity model: non-manipulated animals (C), minor trauma (MT), 1.5 hour of hemorrhagic shock and severe trauma (HS/T), 1.5 hour HS/T followed by 1 hour resuscitation (HS/T+1.0R), 1.5 hour HS/T followed by 4.5 hours resuscitation (HS/T+4.5R)
Project description:A dual platform microarray analysis was used to characterize the temporal transcriptomic response in the mouse liver following trauma and hemmorhagic shock Mice were divided into five groups, anesthetized and surgically treated to simulate a time course and trauma severity model: non-manipulated animals (C), minor trauma (MT), 1.5 hour of hemorrhagic shock and severe trauma (HS/T), 1.5 hour HS/T followed by 1 hour resuscitation (HS/T+1.0R), 1.5 hour HS/T followed by 4.5 hours resuscitation (HS/T+4.5R)
Project description:gene expression profiles of leukocytes from blood (WBCs) and spleen harvested at an early (two hours) time point after injury or sham injury in mice subjected to trauma-hemorrhage, burn injury or lipopolysaccharide (LPS)-infusion at three experimental sites