Project description:The genus Lactobacillus contains over 100 different species that were traditionally considered to be uniformly non-motile. However, at least twelve motile species are known to exist in the L. salivarius clade of this genus. Of these, Lactobacillus rumnis is the only motile species that is also autochthonous to the mammalian gastrointestinal tract. The genomes of two L. ruminis strains, ATCC25644 (human isolate, non-motile) and ATCC27782 (bovine isolate, motile) were sequenced and annotated to identify the genes responsible for flagellum biogenesis and chemotaxis in this species. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644 during the motile growth phase.
2012-07-10 | GSE31556 | GEO
Project description:Organelle genomes of species of genus Thalassiosira
| PRJNA684688 | ENA
Project description:Organelle genomes of species of genus Rhizosolenia
Project description:Nosema is a diverse fungal genus of microsporidian unicellular, obligate symbionts of insects and other arthropods. We performed a comparative genomic analysis of N. muscidifuracis, a Nosema species infecting parasitoid wasp genus Muscidifurax, with six other genome-sequenced Nosema species. A sequence motif containing at least three consecutive Cs was significantly enriched immediately upstream of the start codon in all seven Nosema genomes. Interestingly, this motif is present in ~90% of highly expressed genes, compared to ~20% in lowly expressed genes N. muscidifuracis, which may function as a cis-regulatory element for gene expression control and regulation. Our study provides new insights into the gene regulation evolution in Nosema.
Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species. 18 Flaveria sample including 11 species are sequenced, other three samples were also sequenced as out-group. In all, 21 samples.
Project description:Salvia is an important genus from the Lamiaceae with approximately 1000 species distributed globally. Several Salvia species are commercially important because of their medicinal and culinary properties. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus.
Project description:Extensive sex-biased expression has been seen in multiple surveys D. melanogaster. We were interested in broadly sampling sex-biased expression of orthologs and species- or lineage-specific genes in the Drosophila genus. To appropriately assay gene expression in multiple species, we used custom microarrays designed against each of six species that broadly sample the phylogenetic space represented by the newly completed genomes (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis) and an array designed against D. melanogaster to determine the overall patterns of sex-biased expression in those species and their chromosome linkage. Keywords: other
Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species.
Project description:The model organism Encyclopedia of DNA Elements project (modENCODE) has produced a comprehensive annotation of D. melanogaster transcript models based on an enormous amount of high-throughput experimental data. However, some transcribed elements may not be functional, and technical artifacts may lead to erroneous inference of transcription. Inter-species comparison provides confidence to predicted annotation, since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function. We have performed RNA-Seq and CAGE-Seq experiments on more than 80 samples from multiple tissues and stages of 15 Drosophila species, including 8 previously unsequenced genomes. We have found strikingly conserved sequence, expression, and splicing for the vast majority of transcript models in modENCODE annotation (e.g. 99% exons of coding sequences (CDS), 88% exons of untranslated regions (UTR), and 87% splicing events), indicating that the transcriptome annotation is of very high quality. We also describe dynamic transcriptome evolution within the Drosophila genus, including conserved promoter structure, labile positions of transcription start sites, and rapidly evolving RNA-editing events. We demonstrate how this phylogenetic approach to DNA element validation will prove useful in the annotation of other high priority genomes, especially for genomes that are less compact than Drosophila (e.g. the vast majority of vertebrate genomes). Refer to individual Series (listed below).