Project description:The genus Lactobacillus contains over 100 different species that were traditionally considered to be uniformly non-motile. However, at least twelve motile species are known to exist in the L. salivarius clade of this genus. Of these, Lactobacillus rumnis is the only motile species that is also autochthonous to the mammalian gastrointestinal tract. The genomes of two L. ruminis strains, ATCC25644 (human isolate, non-motile) and ATCC27782 (bovine isolate, motile) were sequenced and annotated to identify the genes responsible for flagellum biogenesis and chemotaxis in this species. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644 during the motile growth phase.
2012-07-10 | GSE31556 | GEO
Project description:Organelle genomes of species of genus Thalassiosira
| PRJNA684688 | ENA
Project description:Organelle genomes of species of genus Rhizosolenia
Project description:Nosema is a diverse fungal genus of microsporidian unicellular, obligate symbionts of insects and other arthropods. We performed a comparative genomic analysis of N. muscidifuracis, a Nosema species infecting parasitoid wasp genus Muscidifurax, with six other genome-sequenced Nosema species. A sequence motif containing at least three consecutive Cs was significantly enriched immediately upstream of the start codon in all seven Nosema genomes. Interestingly, this motif is present in ~90% of highly expressed genes, compared to ~20% in lowly expressed genes N. muscidifuracis, which may function as a cis-regulatory element for gene expression control and regulation. Our study provides new insights into the gene regulation evolution in Nosema.
Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species. 18 Flaveria sample including 11 species are sequenced, other three samples were also sequenced as out-group. In all, 21 samples.
Project description:Salvia is an important genus from the Lamiaceae with approximately 1000 species distributed globally. Several Salvia species are commercially important because of their medicinal and culinary properties. We report the construction of the first fingerprinting array for Salvia species enriched with polymorphic and divergent DNA sequences and demonstrate the potential of this array for fingerprinting several economically important members of this genus.
Project description:Extensive sex-biased expression has been seen in multiple surveys D. melanogaster. We were interested in broadly sampling sex-biased expression of orthologs and species- or lineage-specific genes in the Drosophila genus. To appropriately assay gene expression in multiple species, we used custom microarrays designed against each of six species that broadly sample the phylogenetic space represented by the newly completed genomes (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis) and an array designed against D. melanogaster to determine the overall patterns of sex-biased expression in those species and their chromosome linkage. Keywords: other
Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species.
Project description:Asexual development is fundamental to the ecology and lifestyle of filamentous fungi and can facilitate both plant and human infection. In the filamentous fungal genus Aspergillus, the production of asexual spores is primarily governed by the BrlA-AbaA-WetA central regulatory cascade. The final step in this cascade, which is controlled by the WetA protein, not only governs cellular development (i.e., the morphological differentiation of spores) but also ensures its coupling with chemical development (i.e., the coordinated production and deposition of diverse secondary metabolites, such as aflatoxins, into spores). While the wetA gene is conserved across the genus Aspergillus, the structure and degree of conservation of the BrlA-AbaA-WetA regulatory cascade and the broader wetA gene regulatory network (GRN) remain largely unknown. We carried out comparative transcriptome analyses between wetA null mutant and wild type (WT) asexual spores in three representative species spanning the diversity of the genus Aspergillus: the genetic model A. nidulans, the agricultural pest A. flavus, and the human pathogen A. fumigatus. We discovered that WetA regulates asexual sporulation in all three species via a negative feedback loop that represses BrlA, the cascade’s first step. Furthermore, ChIP-seq experiments in A. nidulans asexual spores suggest that WetA is a DNA-binding protein that interacts with a novel regulatory element, which we term the WetA Response Element (WRE). Interestingly, the WRE is found completely conserved in the non-coding region upstream of the wetA translation start site of many diverse Aspergillus genomes. In contrast, several global transcriptional regulators, most notably those in the velvet complex (veA, velB, and laeA) known to regulate the coupling between asexual development and production of secondary metabolites, show species-specific regulatory patterns. These results suggest that the BrlA-AbaA-WetA cascade’s regulatory role in cellular and chemical development of asexual spores is functionally conserved, but that the WetA-associated GRN has diverged during Aspergillus evolution. This entry is for the ChIP-seq data.