Project description:Objective: To study the effect of astragalus polysaccharide combined with metformin on mRNA expression profile of type 2 diabetic mice, and to explore the molecular mechanism of astragalus polysaccharide combined with metformin in the treatment of type 2 aging diabetes. Methods: Natural aging mice were induced by high-sugar and high-fat diet combined with streptozotocin to prepare aging diabetes model. The experimental mice were divided into aging control group, aging diabetes model group, metformin treatment group, astragalus polysaccharide and metformin. The treatment group was treated with gavage for 60 consecutive days. Immunohistochemical detection of insulin levels in pancreatic tissue of each group of mice, serum insulin levels were measured by mouse insulin kit to observe the treatment of aging diabetes and astragalus polysaccharide combined with metformin; using Agilent mouse whole gene expression profile chip The mRNA expression changes of liver tissues in each group were analyzed, and the differential genes were screened by bioinformatics tools and the differential genes and signal pathways were enriched and analyzed. Results: Compared with the aging group, the insulin and insulin antibody levels in the model group were significantly decreased (P<0.05). Compared with the model group, the insulin and insulin antibody levels in the two treatment groups increased (P<0.05), and jaundice The level of polysaccharide in combination with metformin was significantly higher than that in metformin group (P<0.05). The differential gene analysis of the chip showed that there were 5617 differential genes in the aging diabetes model group, 3131 were up-regulated, and 2486 were down-regulated; the Astragalus polysaccharide combined with metformin treatment group had 4767 differential genes, compared with the aging diabetes model group. 2143 up-regulated, 2624 down-regulated, genes with significant differences were mainly involved in protease activity and drug metabolism, and significantly enriched into 33 signaling pathways (P<0.01). Conclusion: The gene regulatory network plays an important role in the intervention of Astragalus polysaccharides and metformin in the treatment of aging type 2 diabetes.
Project description:Objective: To study the effect of astragalus polysaccharide combined with metformin on mRNA expression profile of type 2 diabetic mice, and to explore the molecular mechanism of astragalus polysaccharide combined with metformin in the treatment of type 2 aging diabetes. Methods: Natural aging mice were induced by high-sugar and high-fat diet combined with streptozotocin to prepare aging diabetes model. The experimental mice were divided into aging control group, aging diabetes model group, metformin treatment group, astragalus polysaccharide and metformin. The treatment group was treated with gavage for 60 consecutive days. Immunohistochemical detection of insulin levels in pancreatic tissue of each group of mice, serum insulin levels were measured by mouse insulin kit to observe the treatment of aging diabetes and astragalus polysaccharide combined with metformin; using Agilent mouse whole gene expression profile chip The mRNA expression changes of liver tissues in each group were analyzed, and the differential genes were screened by bioinformatics tools and the differential genes and signal pathways were enriched and analyzed. Results: Compared with the aging group, the insulin and insulin antibody levels in the model group were significantly decreased (P<0.05). Compared with the model group, the insulin and insulin antibody levels in the two treatment groups increased (P<0.05), and jaundice The level of polysaccharide in combination with metformin was significantly higher than that in metformin group (P<0.05). The differential gene analysis of the chip showed that there were 5617 differential genes in the aging diabetes model group, 3131 were up-regulated, and 2486 were down-regulated; the Astragalus polysaccharide combined with metformin treatment group had 4767 differential genes, compared with the aging diabetes model group. 2143 up-regulated, 2624 down-regulated, genes with significant differences were mainly involved in protease activity and drug metabolism, and significantly enriched into 33 signaling pathways (P<0.01). Conclusion: The gene regulatory network plays an important role in the intervention of Astragalus polysaccharides and metformin in the treatment of aging type 2 diabetes.
Project description:performing high-throughput RNA sequencing (RNA-Seq) transcriptomic analysis of hepatic cells after metformin or CWE treatment to identify changes in diabetes-related gene expression. Outcomes of this project provide evidence for the effectiveness of Ceylon cinnamon water extract compared to the current standard therapy for type 2 diabetes, metformin.
Project description:Metformin has been commonly used for decades to treat type 2 diabetes. Recent data indicates that mice treated with metformin live longer and healthier lives. Here, we show that chronic metformin exposure in mice and diabetics taking metformin have higher levels of the microRNA processing protein, Dicer. Examination of how metformin affects Dicer expression revealed that metformin alters binding of the AUF1 RNA-binding protein to DICER1 mRNA, which leads to stabilization of DICER1 mRNA. We found differential changes in microRNA expression in mice treated with metformin or caloric restriction, a proven life extending intervention. Several of these microRNAs are important for regulating cellular senescence and lifespan in model organisms. Consistent with this observation, treatment with metformin decreased cellular senescence in a Dicer-dependent manner. These data lead us to hypothesize that changes in Dicer levels may be important for organismal aging and that interventions that upregulate Dicer expression (e.g., metformin) may offer new therapeutic approaches to combat or prevent age-related diseases. Key words: diabetes mellitus, metformin, senescence, miRNA, RNA-binding proteins
Project description:Optimal treatment for nonalcoholic steatohepatitis (NASH) has not yet been established, particularly for individuals without diabetes. We examined the effects of metformin, commonly used to treat patients with type 2 diabetes, on liver pathology in a non-diabetic NASH mouse model. Eight-week-old C57BL/6 mice were fed a methionine- and choline-deficient (MCD) + high fat (HF) diet with or without 0.1% metformin for 8 weeks.
Project description:Metformin is now the most widely prescribed oral anti-diabetic agent worldwide, taken by over 150 million people annually. Although metformin has been used clinically to treat type 2 diabetes for over 60 years. Its mechanism of action remains only partially understood and controversial. In particular, this includes whether AMPK plays a role in metformin suppression of liver glucose production. To address this issue, we knocked out the AMPK catalytic alpha1 and alpha 2 subunits in the liver of HFD-fed adult homozygous mice. These mice were treated with a physiological relevent metformin dose (50 mg/kg/day) for 3 weeks. Liver samples were collected.
Project description:Metformin is the therapy of choice for treating type 2 diabetes and is currently repurposed for a wide range of diseases including aging. Recent evidence implicates the gut microbiota as a site of metformin action. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed C. elegans RNAseq to investigate the role of the metformin sensitive OP50 and metformin resistant OP50-MR E. coli microbiota in the drug effects on the host. Our data suggest an evolutionarily conserved bacterial mediation of metformin effects on host lipid metabolism and lifespan.
Project description:Background: Metformin, one of the first-line medication for the treatment of type 2 diabetes and gestational diabetes, has recently be suggested for targeting cardiovascular disease, cancer and aging. Therefore, current understanding of the mechanism of this drug is incompletely understood, and the function of multiple tissues, other than liver metabolism alone, may be influenced. Methods: The wildtype healthy mice treated with metformin were compared with controls (treated with double distilled water). The transcriptome changes with/without metformin treatment were probed by using high-throughput RNA-seq techniques Results: A comprehensive mouse transcriptome map with metformin treatment across ten tissues including aorta, eyeball, brain, adipose tissue, heart, kidney, liver, skeletal muscle, stomach and testis, was provided. Function enrichment, network characteristics and disease association of the differentially expressed genes were analyzed. We also compared our expression profiles with related microarray data in order to find conditions that share similar expression profiles with metformin treatment. Conclusions: This dataset could serve as a baseline resource for investigating the potential beneficial or adverse effects of metformin across different tissues.
Project description:Inflammation, oxidative and dicarbonyl stress play important roles in the pathophysiology of type 2 diabetes. Metformin is the first-line drug of choice for the treatment of type 2 diabetes because it effectively suppresses gluconeogenesis in the liver, however, its “pleiotropic“ effects remain controversial. In the current study, we tested the effects of metformin on inflammation, oxidative and dicarbonyl stress in an animal model of inflammation and metabolic syndrome, the spontaneously hypertensive rat transgenically expressing human C-reactive protein (SHR-CRP). In the SHR-CRP transgenic strain, we found that metformin treatment decreased circulating levels of inflammatory response marker IL6 while levels of human CRP remained unchanged and metformin also significantly reduced oxidative stress (levels of conjugated dienes and TBARS) in the liver while no significant effects were observed in SHR control rats. In addition, in the presence of high human CRP, metformin reduced methylglyoxal levels in left ventricles but not in kidneys. Finally, metformin treatment reduced adipose tissue lipolysis. Possible molecular mechanisms of metformin action studied by gene expression profiling in the liver revealed deregulated genes from inflammatory, insulin signaling, AMP-activated protein kinase (AMPK) signaling and gluconeogenesis pathways. It can be concluded that in the presence of high levels of human CRP metformin protects against inflammation, oxidative and dicarbonyl stress in the heart and ameliorates insulin resistance and dyslipidemia.