Project description:Transcriptional profiling of the jejunum mucosa with 1.5 fold-change reporter genes in comparing control black-boned chickens under normal temperature (NT) conditon with heat-stress treated black-boned chickens under high temperature (HT) condition. Goal was to determine the differentially expressed genes (DEGs) in co-family black-boned chickens exposure to heat stress based on global chicken gene expression.
Project description:Adding lysolecithin to feed has reportedly improved the performance of broiler chickens. Lysolecithin is generated by phospholipase catalyzed hydrolysis of lecithin. The enzymatic reaction converts phospholipids into lysophospholipids, with lysophosphatidylcholine (LPC) the primary product. Here we compared supplementation with a commercial lysolecithin (Lysoforte(R) Kemin Industries, Inc., Des Moines, IA) with comparable levels of purified LPC for effects on broilers. Despite no differences in weight gain during the starter period, we discovered a significant increase in average villus length in the jejunum with lysolecithin, but not with LPC. High-throughput gene expression microarray analyses revealed many more genes were regulated in the epithelium of jejunum by lysolecithin compared to LPC. The most upregulated genes and pathways were for collagen, extracellular matrix and integrins. Staining sections of jejunum with Sirius Red confirmed the increased deposition of collagen fibrils in villi of broilers fed lysolecithin but not LPC. Thus, lysolecithin elicits gene expression in the intestinal epithelium leading to enhanced collagen deposition and villus length. LPC alone as a supplement does not mimic these responses. Feed supplementation with lysolecithin triggers changes in the intestinal epithelium with the potential to improve overall gut health and performance.
Project description:Transcriptional profiling of the jejunum mucosa with 1.5 fold-change reporter genes in comparing control black-boned chickens under normal temperature (NT) conditon with heat-stress treated black-boned chickens under high temperature (HT) condition. Goal was to determine the differentially expressed genes (DEGs) in co-family black-boned chickens exposure to heat stress based on global chicken gene expression. Two-condition experiment, HT vs. NT Treatment. Biological replicates: 3 control replicates, 3 heat stressed replicates.
Project description:Here, we performed single-cell RNA sequencing (scRNA-seq) of a human fetal jejunum tissue sample from 1 individual biological specimen age 40 weeks post conception. The data set is composed of cells from diverse intestinal lineages.
Project description:Results of RNA-seq of normal C57BL/6 small intestinal epithelial cells sorted from duodenum, jejunum and ileum separately. Samples are named as follow; mouse replicate number-duodenum(1), jejunum(2) or ileum(3). For example, 1-1, 1-2 and 1-3 representing duodenum, jejunum and ileum respectively from mouse replicate number 1.
Project description:We report the expression profiles of three stem-cell varieties derived from the ileum and jejunum, focusing on gene signatures that are consistent in all stem cells of an intestinal location. We find that intestinal stem cells establish and maintain a regional identity that is discernable through gene expression patterns consistent with intestinal function particular to that region.