Project description:Serotype prevalence and antimicrobial susceptibility of Streptococcus agalactiae in pregnant women and neonates of Hong Kong, China
Project description:Streptococcus agalactiae, also known as Group B streptococcus, emerged in the 1960s as a leading cause of septicemia and meningitis in neonates. It is also an increasing cause of infections in adults with underlying diseases. To characterize transcription start sites (TSS) in the hypervirulent ST17 lineage (strain BM110) we used a differential RNA-seq strategy, based on selective Tobacco Acid Pyrophosphatase (TAP) treatment and adapter ligation, which differentiates primary transcripts and processed RNAs
Project description:Streptococcus agalactiae, also known as Group B streptococcus, emerged in the 1960s as a leading cause of septicemia and meningitis in neonates. It is also an increasing cause of infections in adults with underlying diseases. To characterize regulatory elements in this species we performed a genome-wide transcription start site (TSS) profiling and whole-transcript sequencing. TSS were identified by using a differential RNA-seq strategy, based on selective Tobacco Acid Pyrophosphatase (TAP) treatment and adapter ligation, which differentiates primary transcripts and processed RNAs. The accuracy and sensitivity of TSS identification were increased by combining differential RNA-seq analyses under eight conditions corresponding to variations in growth conditions and genetic backgrounds. Whole-transcript sequencing used a two-step adaptor ligation-based directional RNA-seq protocol and was performed under two experimental conditions with triplicate experiments to assess variations in gene expression in response to an acid stress
Project description:We have worked on skin explants and activated T cells locally with a CD3 antibody, whole biopsies were activated, then epidermal and dermal RNA was sequenced. Sequencing was performed by BGI (Hong Kong) as well as the group analysis.
Project description:Streptococcus suis serotype 2 (SS2) is able to cause human infections ranging from superficial wounded skin infections to severe invasive infections such as meningitis and streptococcal toxic shock-like syndrome (STSLS). During its infection cycle, SS2 must acclimatize itself to temperature shift. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of an invasive SS2 strain grown to late-exponential phase at 29 or 40°C relative to 37°C. The detecting differentially regulated genes included those encoding virulence factors, antigenic proteins, ABC transporters and unknown functions. Our data provided a global profile of gene transcription induced by temperature alteration and shed light on some unforeseen lines for further pathogenesis investigation.
Project description:This animal study was approved by the Ethics Committee at school of Chinese medicine,Hong Kong Baptist University. A total of 4 female and 4 male C57BL/6 mices were included in control diet group (BC); A total of 4 female and 4 male C57BL/6 mices were included in high fat diet group (BT).