Project description:Chordomas are cancers from the axial skeleton presenting immunological hallmarks of unknown significance. In recent years, some clinical trials demonstrated that chordomas can respond to immunotherapy. We present a comprehensive characterisation of immunological features of 76 chordomas through application of a multimodal approach comprising transcriptional profiling, multidimensional immunophenotyping and TCR profiling. Chordomas generally presented an immune “hot” microenvironment in comparison to other sarcomas, as indicated by the immunologic constant of rejection transcriptional signature. We identified two distinct groups of chordomas based on T cell infiltration. The highly infiltrated group was further characterised by high dendritic cell infiltration and the presence of multicellular immune aggregates in tumours, whereas low T cell infiltration was associated with lower overall cell densities of immune and stromal cells. Interestingly, patients with higher T cell infiltration displayed a more pronounced clonal enrichment of the T cell receptor repertoire compared to those with low T cell counts. Furthermore, we observed that the majority of chordomas maintained HLA class I expression. Our findings shed light on the natural immunity against chordomas. Understanding their immune landscape could guide the development and application of immunotherapies in a tailored manner, ultimately leading to an improved clinical outcome for chordoma patients.
Project description:The prognostic factors of skull base chordoma associated with outcomes of patients after surgical resection remain poorly defined. This project aimed to identify a novel prognostic factor for patients with skull base chordoma. Using a proteomics approach, we screened tumor biomarkersthat upregulated in the rapid-recurrence group of chordoma, narrowed down by bioinformatics analysis, and finally potential biomarker was chosen for validation by immunohistochemistry using tissue microarray.
Project description:Chromatin profiling of chordoma collected by the Broad chordoma target discovery project paired end ATAC-Seq profiling in the UCH2 and MUGCHOR chordoma cell lines
Project description:Chordoma is a rare, resistant bone tumor thought to be arised from remnants of embryonic notochord. Cancer stem cells (CSCs) are associated with tumorigenesis, recurrence and resistance in cancers. Here, we used miRNA and mRNA transcriptome analysis to discover novel genes and networks in chordoma CSCs
Project description:Chordoma is a rare, resistant bone tumor thought to be arised from remnants of embryonic notochord. Cancer stem cells (CSCs) are associated with tumorigenesis, recurrence and resistance in cancers. Here, we used miRNA and mRNA transcriptome analysis to discover novel genes and networks in chordoma Cancer Stem Cells
Project description:Chordoma is a rare malignant tumor thought to originate from embryonic notochord. However, no molecular comparison of chordoma and notochord has been performed to date, leaving the identities of dysregulated pathways unclear. Absence of a molecular description of a control tissue clouds our understanding of chordoma. Thus, we conducted an unbiased comparison of chordoma and notochord using gene expression profiling to clarify chordoma’s tissue of origin and identify novel drug targets
Project description:Chordoma is a rare primary bone malignancy that arises in the skull base, spine and sacrum and originates from remnants of the notochord. These tumors are typically resistant to conventional chemotherapy, and to date there are no FDA-approved agents to treat chordoma. The lack of in vivo models of chordoma has impeded the development of new therapies for this tumor. Primary tumor from a sacral chordoma was xenografted into NOD/SCID/IL-2R γ-null mice. The xenograft is serially transplantable and was characterized by both gene expression analysis and whole genome SNP genotyping. The NIH Chemical Genomics Center performed high-throughput screening of 2,816 compounds using two established chordoma cell lines, U-CH1 and U-CH2B. The screen yielded several compounds that showed activity and two, sunitinib and bortezomib, were tested in the xenograft. Both agents slowed the growth of the xenograft tumor. Sensitivity to an inhibitor of IκB, as well as inhibition of an NF-κB gene expression signature demonstrated the importance of NF-κB signaling for chordoma growth. This serially transplantable chordoma xenograft is thus a practical model to study chordomas and perform in vivo preclinical drug testing. The copy number and allelic balance pattern of a novel human chordoma xenograft samples was determined with Illumina BeadChips.
Project description:Chordoma is a rare malignant tumor thought to originate from embryonic notochord. However, no molecular comparison of chordoma and notochord has been performed to date, leaving the identities of dysregulated pathways unclear. Absence of a molecular description of a control tissue clouds our understanding of chordoma. Thus, we conducted an unbiased comparison of chordoma and notochord using gene expression profiling to clarify chordoma’s tissue of origin and identify novel drug targets